cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349862 a(n) is the maximum value of binomial(n-2*k,k) with 0 <= k <= floor(n/3).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 5, 6, 10, 15, 21, 28, 36, 56, 84, 120, 165, 220, 330, 495, 715, 1001, 1365, 2002, 3003, 4368, 6188, 8568, 12376, 18564, 27132, 38760, 54264, 77520, 116280, 170544, 245157, 346104, 490314, 735471, 1081575, 1562275, 2220075, 3124550, 4686825, 6906900, 10015005, 14307150
Offset: 0

Views

Author

Enrique Navarrete, Dec 02 2021

Keywords

Examples

			a(7) = 5 since row n=7 of A102547 is 1, 5, 3 and the maximum value is 5.
a(20) = 495 since row n=20 of A102547 is 1, 18, 120, 364, 495, 252, 28. The maximum value of 495 occurs at k = 4.
		

Crossrefs

Maximum row values of A102547.
Cf. A073028.

Programs

  • Mathematica
    a[n_]:=Max[Table[Binomial[n-2k,k],{k,0,Floor[n/3]}]]; Array[a,49,0] (* Stefano Spezia, Dec 06 2021 *)
  • PARI
    a(n) = vecmax(vector(n\3+1, k, k--; binomial(n-2*k, k))); \\ Michel Marcus, Dec 06 2021
    
  • Python
    from math import comb
    def A349862(n): return max(comb(n-2*k,k) for k in range(n//3+1)) # Chai Wah Wu, Jan 04 2022