A349875 Triangular numbers whose mean digit value reaches a new maximum.
0, 1, 3, 6, 78, 686999778, 9876799878, 89996788896, 77779987999896, 589598998999878, 999699998689998991, 9988894989978899995, 95898999989999989765, 999999966989999986978996
Offset: 1
Examples
n a(n) digit sum #dgts mean digit value -- -------------------- --------- ----- ---------------- 1 0 0 1 0 2 1 1 1 1 3 3 3 1 3 4 6 6 1 6 5 78 15 2 7.5 6 686999778 69 9 7.66666666666... 7 9876799878 78 10 7.8 8 89996788896 87 11 7.90909090909... 9 77779987999896 111 14 7.92857142857... 10 589598998999878 120 15 8 11 999699998689998991 145 18 8.05555555555... 12 9988894989978899995 154 19 8.10526315789... 13 95898999989999989765 163 20 8.15
Programs
-
Mathematica
seq = {}; max = -1; Do[If[(m = Mean @ IntegerDigits[(t = n*(n + 1)/2)]) > max, max = m; AppendTo[seq, t]], {n, 0, 10^6}]; seq (* Amiram Eldar, Dec 03 2021 *)
-
Python
def meandigval(n): s = str(n); return sum(map(int, s))/len(s) def afind(limit): alst, k, t, record = [], 0, 0, -1 while t <= limit: mdv = meandigval(t) if mdv > record: print(t, end=", ") record = mdv k += 1 t += k afind(10**14) # Michael S. Branicky, Dec 03 2021
Extensions
a(14) verified by Martin Ehrenstein, Dec 06 2021
Comments