cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349934 Array read by ascending antidiagonals: A(n, s) is the n-th s-Catalan number.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 14, 15, 4, 1, 42, 91, 34, 5, 1, 132, 603, 364, 65, 6, 1, 429, 4213, 4269, 1085, 111, 7, 1, 1430, 30537, 52844, 19845, 2666, 175, 8, 1, 4862, 227475, 679172, 383251, 70146, 5719, 260, 9, 1, 16796, 1730787, 8976188, 7687615, 1949156, 204687, 11096, 369, 10, 1
Offset: 1

Views

Author

Stefano Spezia, Dec 06 2021

Keywords

Examples

			The array begins:
n\s |  1    2     3      4      5
----+----------------------------
  1 |  1    1     1      1      1 ...
  2 |  2    3     4      5      6 ...
  3 |  5   15    34     65    111 ...
  4 | 14   91   364   1085   2666 ...
  5 | 42  603  4269  19845  70146 ...
  ...
		

Crossrefs

Cf. A000012 (n=1), A220892 (n=4).
Cf. A000108 (s=1), A099251 (s=2), A264607 (s=3).
Cf. A349933.

Programs

  • Mathematica
    T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,s_]:=T[2n,s n,s]-T[2n,s n+1,s]; Flatten[Table[A[n-s+1,s],{n,10},{s,n}]]
  • PARI
    T(n, k, s) = polcoef((sum(i=0, s, x^i))^n, k);
    A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s); \\ Michel Marcus, Dec 10 2021

Formula

A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
A(2, n) = A000027(n+1).
A(3, n) = A006003(n+1).