A349934 Array read by ascending antidiagonals: A(n, s) is the n-th s-Catalan number.
1, 2, 1, 5, 3, 1, 14, 15, 4, 1, 42, 91, 34, 5, 1, 132, 603, 364, 65, 6, 1, 429, 4213, 4269, 1085, 111, 7, 1, 1430, 30537, 52844, 19845, 2666, 175, 8, 1, 4862, 227475, 679172, 383251, 70146, 5719, 260, 9, 1, 16796, 1730787, 8976188, 7687615, 1949156, 204687, 11096, 369, 10, 1
Offset: 1
Examples
The array begins: n\s | 1 2 3 4 5 ----+---------------------------- 1 | 1 1 1 1 1 ... 2 | 2 3 4 5 6 ... 3 | 5 15 34 65 111 ... 4 | 14 91 364 1085 2666 ... 5 | 42 603 4269 19845 70146 ... ...
Links
- William Linz, s-Catalan numbers and Littlewood-Richardson polynomials, arXiv:2110.12095 [math.CO], 2021. See p. 2.
Crossrefs
Programs
-
Mathematica
T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,s_]:=T[2n,s n,s]-T[2n,s n+1,s]; Flatten[Table[A[n-s+1,s],{n,10},{s,n}]]
-
PARI
T(n, k, s) = polcoef((sum(i=0, s, x^i))^n, k); A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s); \\ Michel Marcus, Dec 10 2021