A351871 a(1) = 1, a(2) = 2; a(n) = gcd(a(n-1), a(n-2)) + (a(n-1) + a(n-2))/gcd(a(n-1), a(n-2)).
1, 2, 4, 5, 10, 8, 11, 20, 32, 17, 50, 68, 61, 130, 192, 163, 356, 520, 223, 744, 968, 222, 597, 276, 294, 101, 396, 498, 155, 654, 810, 250, 116, 185, 302, 488, 397, 886, 1284, 1087, 2372, 3460, 1462, 2463, 3926, 6390, 5160, 415, 1120, 312, 187, 500, 688, 301, 66, 368, 219, 588, 272, 219, 492, 240, 73, 314, 388
Offset: 1
Examples
a(3) = gcd(1,2) + (1+2)/gcd(1,2) = 1 + 3/1 = 4. a(4) = gcd(2,4) + (2+4)/gcd(2,4) = 2 + 6/2 = 5. a(5) = gcd(4,5) + (4+5)/gcd(4,5) = 1 + 9/1 = 10. a(6) = gcd(5,10) + (5+10)/gcd(5,10) = 5 + 15/5 = 8. ... a(3179) = a(2901 + 278) = a(278) = 40.
Links
- Augusto Santi, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log-log scatterplot of a(n), n = 1..2^15, with red showing records, demonstrating periodicity.
- Augusto Santi, A singular variant of the OEIS sequence A349576, Mathematics Stack Exchange, 2022.
- Index entries for linear recurrences with constant coefficients, order 2901.
Programs
-
Maple
A351871 := proc(u,v,M) local n,r,s,g,t,a; a:=[u,v]; r:=u; s:=v; for n from 1 to M do g:=gcd(r,s); t:=g+(r+s)/g; a:=[op(a),t]; r:=s; s:=t; od; a; end proc; A351871(1,2,100); # N. J. A. Sloane, Sep 01 2022
-
Mathematica
a[1] = 1; a[2] = 2; a[n_] := a[n] = GCD[a[n - 1], a[n - 2]] + (a[n - 1] + a[n - 2])/GCD[a[n - 1], a[n - 2]]; Array[a, 50] (* Amiram Eldar, Feb 24 2022 *)
-
PARI
{a351871(N=65,A1=1,A2=2)= my(a=vector(N)); a[1]=A1; a[2]=A2; for(n=1,N,if(n>2,my(g=gcd(a[n-1],a[n-2])); a[n]=g+(a[n-1]+a[n-2])/g); print1(a[n],",")) } \\ Ruud H.G. van Tol, Sep 19 2022
-
Python
from math import gcd a, terms = [1, 2], 65 [a.append(gcd(a[-1], a[-2]) + (a[-1] + a[-2])//gcd(a[-1], a[-2])) for n in range(3, terms+1)] print(a) # Michael S. Branicky, Sep 01 2022
Formula
For n >= 278, a(2901 + n) = a(n).
Comments