cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350107 a(n) = Sum_{k=1..n} k * floor(n/k)^2.

Original entry on oeis.org

1, 6, 14, 31, 45, 81, 101, 150, 191, 253, 285, 401, 439, 527, 623, 752, 802, 979, 1035, 1233, 1369, 1509, 1577, 1901, 2020, 2186, 2362, 2642, 2728, 3136, 3228, 3549, 3765, 3983, 4215, 4772, 4882, 5126, 5382, 5932, 6054, 6630, 6758, 7202, 7664, 7960, 8100, 8936
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2021

Keywords

Crossrefs

Column 2 of A350106.

Programs

  • Mathematica
    a[n_] := Sum[k * Floor[n/k]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 14 2021 *)
    Accumulate[Table[2*k*DivisorSigma[0, k] - DivisorSigma[1, k], {k, 1, 100}]] (* Vaclav Kotesovec, Dec 16 2021 *)
  • PARI
    a(n) = sum(k=1, n, k*(n\k)^2);
    
  • PARI
    a(n) = sum(k=1, n, k*sumdiv(k, d, (2*d-1)/d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1-x^k)^2)/(1-x))
    
  • PARI
    a(n) = sum(k=1, n, 2*k*numdiv(k)-sigma(k));
    
  • Python
    from math import isqrt
    def A350107(n): return -(s:=isqrt(n))**3*(s+1)+sum((q:=n//k)*((k<<1)*((q<<1)+1)-q-1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k * Sum_{d|k} (2*d - 1)/d = 2 * A143127(n) - A024916(n).
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k/(1 - x^k)^2.
a(n) = Sum_{k=1..n} 2 * k * tau(k) - sigma(k).