A350107 a(n) = Sum_{k=1..n} k * floor(n/k)^2.
1, 6, 14, 31, 45, 81, 101, 150, 191, 253, 285, 401, 439, 527, 623, 752, 802, 979, 1035, 1233, 1369, 1509, 1577, 1901, 2020, 2186, 2362, 2642, 2728, 3136, 3228, 3549, 3765, 3983, 4215, 4772, 4882, 5126, 5382, 5932, 6054, 6630, 6758, 7202, 7664, 7960, 8100, 8936
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Sum[k * Floor[n/k]^2, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Dec 14 2021 *) Accumulate[Table[2*k*DivisorSigma[0, k] - DivisorSigma[1, k], {k, 1, 100}]] (* Vaclav Kotesovec, Dec 16 2021 *)
-
PARI
a(n) = sum(k=1, n, k*(n\k)^2);
-
PARI
a(n) = sum(k=1, n, k*sumdiv(k, d, (2*d-1)/d));
-
PARI
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1-x^k)^2)/(1-x))
-
PARI
a(n) = sum(k=1, n, 2*k*numdiv(k)-sigma(k));
-
Python
from math import isqrt def A350107(n): return -(s:=isqrt(n))**3*(s+1)+sum((q:=n//k)*((k<<1)*((q<<1)+1)-q-1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 24 2023