cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350275 Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose fourth-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/4).

Original entry on oeis.org

1, 1, 4, 27, 255, 1, 3094, 31, 45865, 791, 803424, 20119, 16239720, 528991, 8505, 372076163, 14689441, 654885, 9529560676, 435580164, 34859160, 269819334245, 13846282341, 1646054025, 8369112382488, 471890017358, 73811825010, 1286223400
Offset: 0

Views

Author

Steven Finch, Dec 22 2021

Keywords

Comments

An endofunction on [n] is a function from {1,2,...,n} to {1,2,...,n}.
If the mapping has no fourth component, then its fourth-largest component is defined to have size 0.

Examples

			Triangle begins:
       1;
       1;
       4;
      27;
     255,     1;
    3094,    31;
   45865,   791;
  803424, 20119;
  ...
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
          b(n-i, sort([l[], i])[-4..-1])*binomial(n-1, i-1), i=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$4])):
    seq(T(n), n=0..14);  # Alois P. Heinz, Dec 22 2021
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-4 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
    T[n_] := With[{p = b[n, {0, 0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
    Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)