cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350405 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly n ways, or 0 if no such number exists.

Original entry on oeis.org

37, 142, 285, 536, 911, 1268, 1909, 2713, 3876, 5179, 6891, 8901, 11190, 14384, 18087, 21697, 27055, 32166, 39111, 46560, 53892, 64412, 73949, 86778, 98202, 113635, 130088, 148051, 167505, 190968, 214955, 240143, 269775, 297615, 331201, 367429, 409179, 451340, 497830
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 29 2021

Keywords

Examples

			For n = 3: 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
		

Crossrefs

Programs

  • Mathematica
    Do[i=1;While[b=PolygonalNumber[n,Range@i++];!IntegerQ[t=Min[First/@Select[Tally[Select[Total/@Subsets[b,{n}],#<=Max@b&]],Last@#==n&]]]];Print@t,{n,3,10}] (* Giorgos Kalogeropoulos, Dec 30 2021 *)

Formula

a(n) >= A006484(n). - David A. Corneth, Dec 30 2021

Extensions

a(10)-a(31) from Michael S. Branicky, Dec 29 2021
More terms from David A. Corneth, Dec 30 2021

A360217 a(n) is the smallest positive integer which can be represented as the sum of n distinct nonzero tetrahedral numbers in exactly n ways, or -1 if no such integer exists.

Original entry on oeis.org

1, 140, 305, 315, 435, 644, 830, 1141, 1425, 1925, 2380, 3010, 3805, 4720, 5806, 7095, 8510, 10200, 12020, 14115, 16460, 19131, 21990, 25425, 29275, 33495, 37425, 42680, 48300, 54545, 60711, 68391, 75726, 84815, 93370, 103250, 114115, 125360, 137831, 150995, 165545, 179830
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 30 2023

Keywords

Examples

			For n = 3: 305 = 1 + 84 + 220 = 20 + 120 + 165 = 56 + 84 + 165.
		

Crossrefs

Extensions

More terms from David A. Corneth, Jan 30 2023

A360431 a(n) is the smallest positive integer which can be represented as the sum of n distinct binomial coefficients binomial(k,n) for some k >= n in exactly n ways, or -1 if no such integer exists.

Original entry on oeis.org

1, 16, 305, 4396, 43093, 332193, 87172020, 273879343
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 07 2023

Keywords

Examples

			For n = 2: 16 = C(2,2) + C(6,2) = C(4,2) + C(5,2) = 1 + 15 = 6 + 10.
For n = 3: 305 = C(3,3) + C(9,3) + C(12,3) = C(6,3) + C(10,3) + C(11,3) = C(8,3) + C(9,3) + C(11,3) = 1 + 84 + 220 = 20 + 120 + 165 = 56 + 84 + 165.
For n = 4: 4396 = C(5,4) + C(11,4) + C(14,4) + C(18,4) = C(8,4) + C(9,4) + C(16,4) + C(17,4) = C(9,4) + C(12,4) + C(13,4) + C(18,4) = C(10,4) + C(14,4) + C(15,4) + C(16,4) = 5 + 330 + 1001 + 3060 = 70 + 126 + 1820 + 2380 = 126 + 495 + 715 + 3060 = 210 + 1001 + 1365 + 1820.
		

Crossrefs

Extensions

a(8) from Michael S. Branicky, Feb 17 2023
Showing 1-3 of 3 results.