cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A350397 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal pyramidal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

305, 1980, 1900, 3321, 5256, 8310, 12516, 17108, 24832, 34249, 42381, 61697, 78766, 106956, 132994, 170325, 203415, 266595, 322943, 393828, 475520, 569416, 695799, 823447, 958300, 1149125, 1313545, 1565055, 1802736, 2088119, 2376250, 2748270, 3135195, 3548876
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 29 2021

Keywords

Examples

			For n = 3: 305 = 1 + 84 + 220 = 20 + 120 + 165 = 56 + 84 + 165.
		

Crossrefs

Extensions

a(10)-a(22) from Michael S. Branicky, Dec 29 2021
a(23)-a(36) from Martin Ehrenstein, Jan 14 2022

A374144 a(n) is the smallest number which can be represented as the sum of two distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

81, 1105, 205427, 483031, 9402323, 6232341, 79324200, 768459127, 2265692766, 2413112833, 6737406626, 150437989675, 45319359337, 15140186701
Offset: 3

Views

Author

Ilya Gutkovskiy, Jun 28 2024

Keywords

Examples

			a(3) = 81 = 3 + 78 = 15 + 66 = 36 + 45.
		

Crossrefs

Programs

  • Python
    # see linked program

Extensions

a(9)-a(16) from Michael S. Branicky, Jun 30 2024

A350423 a(n) is the smallest n-gonal number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly n ways, or -1 if none exists.

Original entry on oeis.org

190, 289, 330, 561
Offset: 3

Views

Author

Ilya Gutkovskiy, Dec 31 2021

Keywords

Examples

			For n = 3: 190 = 1 + 36 + 153 = 15 + 55 + 120 = 21 + 78 + 91.
		

Crossrefs

A374274 a(n) is the smallest number which can be represented as the sum of four distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

47, 142, 344, 652, 834, 1542, 2263, 3090, 4792, 4570, 5844, 8480, 9571, 10542, 15892, 18202, 19587, 23166, 26732, 32040, 36371, 39730, 44709, 52940, 55141, 60362, 67705, 79624, 86906, 89266, 103591, 116246, 126610, 131462, 135324, 148190, 158152, 162422, 186126, 200254
Offset: 3

Views

Author

Ilya Gutkovskiy, Jul 02 2024

Keywords

Examples

			a(3) = 47 = 1 + 3 + 15 + 28 = 1 + 10 + 15 + 21 = 3 + 6 + 10 + 28.
a(4) = 142 = 1^2 + 2^2 + 4^2 + 11^2 = 1^2 + 4^2 + 5^2 + 10^2 = 2^2 + 5^2 + 7^2 + 8^2 = 3^2 + 4^2 + 6^2 + 9^2.
		

Crossrefs

Extensions

a(36) and beyond from Michael S. Branicky, Jul 08 2024

A374273 a(n) is the smallest number which can be represented as the sum of three distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

37, 161, 498, 1666, 2546, 7434, 16609, 25952, 48786, 49861, 72347, 127335, 183289, 196469, 416913, 466546, 494369, 506649, 801010, 1401011, 2372586, 1414009, 2003027, 3274986, 2927260, 2721677, 5592756, 8016592, 6632759, 7057914, 8401837, 13248146, 11648679, 8650006
Offset: 3

Views

Author

Ilya Gutkovskiy, Jul 02 2024

Keywords

Examples

			a(3) = 37 = 1 + 15 + 21 = 3 + 6 + 28 = 6 + 10 + 21.
a(4) = 161 = 1^2 + 4^2 + 12^2 = 2^2 + 6^2 + 11^2 = 4^2 + 8^2 + 9^2 = 5^2 + 6^2 + 10^2.
		

Crossrefs

Extensions

a(21) and beyond from Michael S. Branicky, Jul 08 2024

A352975 a(n) is the smallest number which can be represented as the sum of n distinct centered n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

96, 192, 330, 504, 840, 1304, 1872, 2910, 3971, 5340, 6851, 8932, 11700, 14496, 18258, 22410, 27265, 32620, 39606, 47124, 55545, 65448, 76050, 87854, 101925, 116956, 134125, 152340, 173538, 195424, 220473, 246942, 276570, 306756, 340918, 377644, 418821, 462720
Offset: 3

Views

Author

Ilya Gutkovskiy, Apr 13 2022

Keywords

Comments

If a(n) exists, then n divides a(n). - Thomas Scheuerle, Apr 13 2022

Examples

			For n = 3: 96 = 1 + 10 + 85 = 1 + 31 + 64 = 19 + 31 + 46.
		

Crossrefs

Formula

a(n) >= n*binomial(n + 2, 3) + n, if a(n) exists. - Thomas Scheuerle, Apr 13 2022

Extensions

a(10)-a(16) from Thomas Scheuerle, Apr 13 2022
a(17)-a(40) from Michael S. Branicky, May 19 2022

A363253 a(n) is the smallest n-gonal number which can be represented as the sum of distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.

Original entry on oeis.org

28, 121, 210
Offset: 3

Views

Author

Ilya Gutkovskiy, May 23 2023

Keywords

Comments

a(8) = 736, a(9) = 969.

Examples

			For n = 3: 1 + 6 + 21 = 3 + 10 + 15 = 28.
		

Crossrefs

A377729 a(n) is the smallest number which can be represented as the sum of n distinct nonzero n-gonal numbers in exactly 2 ways.

Original entry on oeis.org

19, 90, 162, 299, 509, 816, 1248, 1837, 2619, 3634, 4926, 6543, 8537, 10964, 13884, 17361, 21463, 26262, 31834, 38259, 45621, 54008, 63512, 74229, 86259, 99706, 114678, 131287, 149649, 169884, 192116, 216473, 243087, 272094, 303634, 337851, 374893, 414912, 458064, 504509
Offset: 3

Views

Author

Ilya Gutkovskiy, Nov 05 2024

Keywords

Comments

From David A. Corneth, Nov 06 2024: (Start)
a(n) <= (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 for n >= 5. Proof:
A polygonal number is of the form P(m, n) = m/2 * ((n - 2) * m - n + 4).
We have P(n - 5, n) + P(n - 4, n) + P(n, n) = P(n - 6, n) + P(n - 2, n) + P(n - 1, n) = (3*n^3 - 18*n^2 + 21*n) / 2.
This lets us find the upper bound on a(n) by making two lists from 1 through n + 3. From one of them we remove n-2, n-1 and n + 3 and from the other we remove n-3, n+1 and n+2. The sum for remaining polygonal numbers is the same giving an upper bound on a(n) which turns out to be (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 (End)

Examples

			a(3) = 19 = 1 + 3 + 15 = 3 + 6 + 10.
a(4) = 90 = 1^2 + 2^2 + 6^2 + 7^2 = 1^2 + 3^2 + 4^2 + 8^2.
		

Crossrefs

Formula

From David A. Corneth, Nov 06 2024: (Start)
a(n) >= A006484(n).
Conjecture: a(n) = (n^4 - 2*n^3 + 38*n^2 - 85*n + 72)/6 for n >= 5. (End)
Conjectured g.f.: x^3*(19 - 5*x - 98*x^2 + 199*x^3 - 171*x^4 + 72*x^5 - 12*x^6) / (1 - x)^5.

Extensions

a(12)-a(36) from Michael S. Branicky, Nov 06 2024
More terms from David A. Corneth, Nov 10 2024
Showing 1-8 of 8 results.