A374274 a(n) is the smallest number which can be represented as the sum of four distinct nonzero n-gonal numbers in exactly n ways, or -1 if no such number exists.
47, 142, 344, 652, 834, 1542, 2263, 3090, 4792, 4570, 5844, 8480, 9571, 10542, 15892, 18202, 19587, 23166, 26732, 32040, 36371, 39730, 44709, 52940, 55141, 60362, 67705, 79624, 86906, 89266, 103591, 116246, 126610, 131462, 135324, 148190, 158152, 162422, 186126, 200254
Offset: 3
Keywords
Examples
a(3) = 47 = 1 + 3 + 15 + 28 = 1 + 10 + 15 + 21 = 3 + 6 + 10 + 28. a(4) = 142 = 1^2 + 2^2 + 4^2 + 11^2 = 1^2 + 4^2 + 5^2 + 10^2 = 2^2 + 5^2 + 7^2 + 8^2 = 3^2 + 4^2 + 6^2 + 9^2.
Links
- Michael S. Branicky, Table of n, a(n) for n = 3..204
- Eric Weisstein's World of Mathematics, Polygonal Number
Extensions
a(36) and beyond from Michael S. Branicky, Jul 08 2024
Comments