A350295 2nd subdiagonal of the triangle A350292.
6, 8, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, 1485, 1540
Offset: 3
Links
- Harvey P. Dale, Table of n, a(n) for n = 3..1000
- Heiko Harborth and Hauke Nienborg, Saturated vertex Turán numbers for cube graphs, Congr. Num. 208 (2011), 183-188.
- Mathonline, Cube Graphs
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Join[{6,8},Table[Binomial[n,2],{n,5,56}]] LinearRecurrence[{3,-3,1},{6,8,10,15,21},60] (* Harvey P. Dale, Jul 01 2022 *)
Formula
a(n) = binomial(n, 2) = A000217(n-1) for n > 4 with a(3) = 6 and a(4) = 8 (see Theorem 3 in Harborth and Nienborg).
O.g.f.: x^3*(2*x^4 - 3*x^3 - 4*x^2 + 10*x - 6)/(x - 1)^3.
E.g.f.: x^2*(x^2 + 6*x + 6*exp(x) - 6)/12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 7.
Comments