A350336 Number of n X n ternary matrices with no two adjacent 0's.
1, 3, 56, 7504, 6832640, 42780151808, 1836366011301888, 540795841280638713856, 1092417949346109029345132544, 15137179876232766647722798101823488, 1438787206346713875314130065804001328234496, 938091111277955250977701268973340995182098116509696
Offset: 0
Examples
a(1) is trivial because all 3 1 X 1 matrices have no 2 adjacent 0's, whereas for a(2) the 56 matrices are: { {{0, 1}, {1, 0}}, {{0, 1}, {1, 1}}, {{0, 1}, {1, 2}}, {{0, 1}, {2, 0}}, {{0, 1}, {2, 1}}, {{0, 1}, {2, 2}}, {{0, 2}, {1, 0}}, {{0, 2}, {1, 1}}, {{0, 2}, {1, 2}}, {{0, 2}, {2, 0}}, {{0, 2}, {2, 1}}, {{0, 2}, {2, 2}}, {{1, 0}, {0, 1}}, {{1, 0}, {0, 2}}, {{1, 0}, {1, 1}}, {{1, 0}, {1, 2}}, {{1, 0}, {2, 1}}, {{1, 0}, {2, 2}}, {{1, 1}, {0, 1}}, {{1, 1}, {0, 2}}, {{1, 1}, {1, 0}}, {{1, 1}, {1, 1}}, {{1, 1}, {1, 2}}, {{1, 1}, {2, 0}}, {{1, 1}, {2, 1}}, {{1, 1}, {2, 2}}, {{1, 2}, {0, 1}}, {{1, 2}, {0, 2}}, {{1, 2}, {1, 0}}, {{1, 2}, {1, 1}}, {{1, 2}, {1, 2}}, {{1, 2}, {2, 0}}, {{1, 2}, {2, 1}}, {{1, 2}, {2, 2}}, {{2, 0}, {0, 1}}, {{2, 0}, {0, 2}}, {{2, 0}, {1, 1}}, {{2, 0}, {1, 2}}, {{2, 0}, {2, 1}}, {{2, 0}, {2, 2}}, {{2, 1}, {0, 1}}, {{2, 1}, {0, 2}}, {{2, 1}, {1, 0}}, {{2, 1}, {1, 1}}, {{2, 1}, {1, 2}}, {{2, 1}, {2, 0}}, {{2, 1}, {2, 1}}, {{2, 1}, {2, 2}}, {{2, 2}, {0, 1}}, {{2, 2}, {0, 2}}, {{2, 2}, {1, 0}}, {{2, 2}, {1, 1}}, {{2, 2}, {1, 2}}, {{2, 2}, {2, 0}}, {{2, 2}, {2, 1}}, {{2, 2}, {2, 2}} }
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..30
Programs
-
Mathematica
t[m_] := t[m] = Map[ArrayReshape[#, {m, m}] &, Tuples[{0, 1, 2}, m^2]];a[m_] := a[m] = Count[Table[AnyTrue[Flatten[{Table[Equal[0, t[m][[n, a, b]], t[m][[n, a, b + 1]]], {a, 1, m}, {b, 1, m - 1}], Table[Equal[0, t[m][[n, a, b]], t[m][[n, a + 1, b]]], {a, 1, m - 1}, {b, 1, m}]}], TrueQ], {n, 1, 3^(m^2)}], False]; Table[a[n], {n, 1, 3}]
Extensions
Terms a(5)-a(11) from Andrew Howroyd, Jan 04 2022
Comments