cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A350371 Numbers with exactly 4 semiprime divisors.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 198, 204, 220, 228, 234, 240, 260, 264, 270, 276, 280, 294, 306, 308, 312, 315, 336, 340, 342, 348, 350, 364, 372, 378, 380, 408, 414, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 522, 525, 528, 532, 550, 552, 558
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 27 2021

Keywords

Crossrefs

Numbers with exactly k semiprime divisors: A346041 (k=1), A345381 (k=2), A345382 (k=3), this sequence (k=4), A350372 (k=5), A350373 (k=6), A350374 (k=7), A350375 (k=8).

Programs

A350373 Numbers with exactly 6 semiprime divisors.

Original entry on oeis.org

210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 900, 910, 930, 966, 1110, 1122, 1155, 1190, 1218, 1230, 1254, 1290, 1302, 1326, 1330, 1365, 1410, 1430, 1482, 1518, 1554, 1590, 1610, 1722, 1764, 1770, 1785, 1794, 1800, 1806, 1830, 1870, 1914, 1938, 1974, 1995
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 27 2021

Keywords

Crossrefs

Numbers with exactly k semiprime divisors: A346041 (k=1), A345381 (k=2), A345382 (k=3), A350371 (k=4), A350372 (k=5), this sequence (k=6), A350374 (k=7), A350375 (k=8).

Programs

  • Mathematica
    q[n_] := DivisorSum[n, 1 &, PrimeOmega[#] == 2 &] == 6; Select[Range[2000], q] (* Amiram Eldar, Dec 28 2021 *)
  • PARI
    isok(k) = sumdiv(k, d, bigomega(d)==2) == 6; \\ Michel Marcus, Dec 28 2021

A350374 Numbers with exactly 7 semiprime divisors.

Original entry on oeis.org

420, 630, 660, 780, 840, 924, 990, 1020, 1050, 1092, 1140, 1170, 1320, 1380, 1386, 1428, 1470, 1530, 1540, 1560, 1596, 1638, 1650, 1680, 1710, 1716, 1740, 1820, 1848, 1860, 1890, 1932, 1950, 2040, 2070, 2142, 2184, 2220, 2244, 2280, 2380, 2394, 2436, 2460, 2508, 2550
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 27 2021

Keywords

Crossrefs

Numbers with exactly k semiprime divisors: A346041 (k=1), A345381 (k=2), A345382 (k=3), A350371 (k=4), A350372 (k=5), A350373 (k=6), this sequence (k=7), A350375 (k=8).

Programs

  • Mathematica
    q[n_] := DivisorSum[n, 1 &, PrimeOmega[#] == 2 &] == 7; Select[Range[2500], q] (* Amiram Eldar, Dec 28 2021 *)
  • PARI
    isok(k) = sumdiv(k, d, bigomega(d)==2) == 7; \\ Michel Marcus, Dec 28 2021

A350375 Numbers with exactly 8 semiprime divisors.

Original entry on oeis.org

1260, 1980, 2100, 2340, 2520, 2772, 2940, 3060, 3150, 3276, 3300, 3420, 3780, 3900, 3960, 4140, 4200, 4284, 4410, 4680, 4788, 4950, 5040, 5100, 5148, 5220, 5544, 5580, 5700, 5796, 5850, 5880, 5940, 6120, 6468, 6552, 6600, 6660, 6732, 6840, 6900, 7020, 7260, 7308
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 27 2021

Keywords

Crossrefs

Numbers with exactly k semiprime divisors: A346041 (k=1), A345381 (k=2), A345382 (k=3), A350371 (k=4), A350372 (k=5), A350373 (k=6), A350374 (k=7), this sequence (k=8).

Programs

  • Mathematica
    q[n_] := DivisorSum[n, 1 &, PrimeOmega[#] == 2 &] == 8; Select[Range[7500], q] (* Amiram Eldar, Dec 28 2021 *)
  • PARI
    isok(k) = sumdiv(k, d, bigomega(d)==2) == 8; \\ Michel Marcus, Dec 28 2021

A378984 Squares in A378769.

Original entry on oeis.org

32400, 63504, 90000, 129600, 156816, 202500, 219024, 254016, 291600, 345744, 360000, 374544, 467856, 490000, 518400, 571536, 627264, 685584, 777924, 810000, 876096, 960400, 1016064, 1089936, 1166400, 1210000, 1245456, 1382976, 1411344, 1440000, 1498176, 1587600
Offset: 1

Views

Author

Michael De Vlieger, Dec 15 2024

Keywords

Comments

Let omega = A001221, bigomega = A001222, and rad = A007947.
Numbers k that have all types of divisor pairs (d, k/d), d | k, that are listed in both A378769 and A378900. These are listed below:
Type A*: (Nontrivial) unitary divisor pairs, i.e., d coprime to k/d. The rest of the types are in cototient.
Type B*: gcd(d, k/d) > 1, rad(d) !| k/d, rad(k/d) !| d. These exist for k in A375055.
Type C: d < k/d, d | k/d but rad(k/d) !| d. Implies rad(k/d) = rad(k) and omega(d) < omega(k/d). These exist for k in A126706.
Type D: Either rad(d) | k/d, rad(k/d) !| d or vice versa. These exist for k in A378767.
Type E*: d = k/d = sqrt(k).
Type F: rad(d) = rad(k/d) = rad(k), d < k/d, d | k/d. These exist for k in A320966.
Type G*: rad(d) = rad(k/d) = rad(k), neither d | k/d nor k/d | d. These exist for k in A376936.
Asterisks denote symmetric types.
Since numbers d and k/d are either coprime or not, and if not, the squarefree kernel of one either divides the other or not, and if so, d divides k/d or not, and if so, d = k/d or not, there are no other types.
Smallest odd term is a(45) = 2480625.
Square roots not A350372: sqrt(810000) = 900 is not in A350372.

Examples

			a(1) = 32400 = 2^4 * 3^4 * 5^2 has the following divisor pair types:
  Type A: 16 * 2025, Type B: 48 * 675, Type C: 2 * 16200, Type D: 8 * 4050
  Type E: 180 * 180, Type F: 30 * 1080, Type G: 120 * 270.
a(2) = 63504 = 2^4 * 3^4 * 7^2 has the following divisor pair types:
  Type A: 16 * 3969, Type B: 48 * 1323, Type C: 2 * 31752, Type D: 8 * 7938
  Type E: 252 * 252, Type F: 42 * 1512, Type G: 168 * 378.
a(3) = 90000 = 2^4 * 3^2 * 5^4 has the following divisor pair types:
  Type A: 9 * 10000, Type B: 18 * 5000, Type C: 2 * 45000, Type D: 8 * 11250
  Type E: 300 * 300, Type F: 30 * 3000, Type G: 120 * 750, etc.
		

Crossrefs

Programs

  • Mathematica
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[2^21],  IntegerQ@ Sqrt[#] &];
    t = Select[s, Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &];
    Select[t, PrimeOmega[#] > PrimeNu[#] > 2 &]

Formula

This sequence is { k = s^2 : rad(k)^2 | k,
bigomega(k) > omega(k) > 2, p^3 | k and q^3 | k for distinct primes p, q }.
Intersection of A378769 and A378900.
Intersection of A000290, A375055, and A376936.
Sum_{n>=1} = Pi^2/6 - (15/Pi^2) * (1 + Sum_{p prime} (1/(p^4-1))) - ((Sum_{p prime} (1/(p^2*(p^2-1))))^2 - Sum_{p prime} (1/(p^4*(p^2-1)^2)))/2 = 0.00015490158528995570146... . - Amiram Eldar, Dec 21 2024

A350416 Numbers with exactly 9 semiprime divisors.

Original entry on oeis.org

6300, 8820, 9900, 11700, 12600, 14700, 15300, 17100, 17640, 18900, 19404, 19800, 20700, 21780, 22050, 22932, 23400, 25200, 26100, 26460, 27900, 29400, 29700, 29988, 30420, 30492, 30600, 31500, 33300, 33516, 34200, 35100, 35280, 36300, 36900, 37800, 38700, 38808
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 29 2021

Keywords

Comments

Numbers with exactly four distinct prime divisors (cf. A033993), one of which has multiplicity 1 and the others at least 2. - David A. Corneth, Jun 10 2022

Examples

			6300 is in the sequence as 4, 6, 9, 10, 14, 15, 21, 25, 35 are the exactly 9 of its semiprime divisors. - _David A. Corneth_, Jun 10 2022
		

Crossrefs

Numbers with exactly k semiprime divisors: A346041 (k=1), A345381 (k=2), A345382 (k=3), A350371 (k=4), A350372 (k=5), A350373 (k=6), A350374 (k=7), A350375 (k=8), this sequence (k=9).

Programs

A378430 a(n) = Sqrt(A378984(n)).

Original entry on oeis.org

180, 252, 300, 360, 396, 450, 468, 504, 540, 588, 600, 612, 684, 700, 720, 756, 792, 828, 882, 900, 936, 980, 1008, 1044, 1080, 1100, 1116, 1176, 1188, 1200, 1224, 1260, 1300, 1332, 1350, 1368, 1400, 1404, 1440, 1452, 1476, 1500, 1512, 1548, 1575, 1584, 1620, 1656
Offset: 1

Views

Author

Michael De Vlieger, Dec 23 2024

Keywords

Comments

Distinct from A350372; a(20) = 900 is not in A350372.
Proper subset of A126706, intersects A286708.

Crossrefs

Programs

  • Mathematica
    s = Union@ Select[Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[#/b^3]}] &[2^21],  IntegerQ@ Sqrt[#] &];
    t = Select[s, Length@ Select[FactorInteger[#][[All, -1]], # > 2 &] >= 2 &];
    Map[Sqrt, Select[t, PrimeOmega[#] > PrimeNu[#] > 2 &] ]
Showing 1-7 of 7 results.