A350416 Numbers with exactly 9 semiprime divisors.
6300, 8820, 9900, 11700, 12600, 14700, 15300, 17100, 17640, 18900, 19404, 19800, 20700, 21780, 22050, 22932, 23400, 25200, 26100, 26460, 27900, 29400, 29700, 29988, 30420, 30492, 30600, 31500, 33300, 33516, 34200, 35100, 35280, 36300, 36900, 37800, 38700, 38808
Offset: 1
Examples
6300 is in the sequence as 4, 6, 9, 10, 14, 15, 21, 25, 35 are the exactly 9 of its semiprime divisors. - _David A. Corneth_, Jun 10 2022
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
q[n_] := DivisorSum[n, 1 &, PrimeOmega[#] == 2 &] == 9; Select[Range[40000], q] (* Amiram Eldar, Dec 30 2021 *) spd9Q[n_]:=Count[Divisors[n],?(PrimeOmega[#]==2&)]==9; Select[Range[ 40000],spd9Q] (* _Harvey P. Dale, Jun 09 2022 *)
-
PARI
isok(k) = sumdiv(k, d, bigomega(d)==2) == 9; \\ Michel Marcus, Dec 30 2021
-
PARI
is(n)= if(n==1, return(0)); my(f = vecsort(factor(n)[,2])); #f == 4 && f[1] == 1 && f[2]>=2 \\ David A. Corneth, Jun 10 2022
Comments