A350452 Number T(n,k) of endofunctions on [n] with exactly k connected components and no fixed points; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
1, 0, 0, 1, 0, 8, 0, 78, 3, 0, 944, 80, 0, 13800, 1810, 15, 0, 237432, 41664, 840, 0, 4708144, 1022252, 34300, 105, 0, 105822432, 27098784, 1286432, 10080, 0, 2660215680, 778128336, 47790540, 648900, 945, 0, 73983185000, 24165049920, 1815578160, 36048320, 138600
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0; 0, 1; 0, 8; 0, 78, 3; 0, 944, 80; 0, 13800, 1810, 15; 0, 237432, 41664, 840; 0, 4708144, 1022252, 34300, 105; 0, 105822432, 27098784, 1286432, 10080; 0, 2660215680, 778128336, 47790540, 648900, 945; ...
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
Maple
c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end: b:= proc(n) option remember; expand(`if`(n=0, 1, add( b(n-i)*binomial(n-1, i-1)*x*c(i), i=1..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)): seq(T(n), n=0..12);
-
Mathematica
c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}]; b[n_] := b[n] = Expand[If[n == 0, 1, Sum[ b[n - i]*Binomial[n - 1, i - 1]*x*c[i], {i, 1, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n/2}]][b[n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
-
PARI
\\ here AS1(n,k) gives associated Stirling numbers of 1st kind. AS1(n,k)={(-1)^(n+k)*sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 1) )} T(n,k) = {if(n==0, k==0, sum(j=k, n, n^(n-j)*binomial(n-1, j-1)*AS1(j,k)))} \\ Andrew Howroyd, Jan 20 2023
Formula
From Mélika Tebni, Jan 20 2023: (Start)
E.g.f. column k: (LambertW(-x) - log(1 + LambertW(-x)))^k / k!.
-Sum_{k=1..n/2} (-1)^k*T(n,k) = A071720(n+1), for n > 0.
-Sum_{k=1..n/2} (-1)^k*T(n,k) / (n-1) = A007830(n-2), for n > 1.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1, j-1)*A106828(j, k) for n > 0. (End)
Comments