cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350452 Number T(n,k) of endofunctions on [n] with exactly k connected components and no fixed points; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 0, 0, 1, 0, 8, 0, 78, 3, 0, 944, 80, 0, 13800, 1810, 15, 0, 237432, 41664, 840, 0, 4708144, 1022252, 34300, 105, 0, 105822432, 27098784, 1286432, 10080, 0, 2660215680, 778128336, 47790540, 648900, 945, 0, 73983185000, 24165049920, 1815578160, 36048320, 138600
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Comments

For k >= 2 and p prime, T(p,k) == 0 (mod 4*p*(p-1)). - Mélika Tebni, Jan 20 2023

Examples

			Triangle T(n,k) begins:
  1;
  0;
  0,          1;
  0,          8;
  0,         78,         3;
  0,        944,        80;
  0,      13800,      1810,       15;
  0,     237432,     41664,      840;
  0,    4708144,   1022252,    34300,    105;
  0,  105822432,  27098784,  1286432,  10080;
  0, 2660215680, 778128336, 47790540, 648900, 945;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000435.
Row sums give A065440.
T(2n,n) gives A001147.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*binomial(n-1, i-1)*x*c(i), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
         b[n - i]*Binomial[n - 1, i - 1]*x*c[i], {i, 1, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n/2}]][b[n]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
  • PARI
    \\ here AS1(n,k) gives associated Stirling numbers of 1st kind.
    AS1(n,k)={(-1)^(n+k)*sum(i=0, k, (-1)^i * binomial(n, i) * stirling(n-i, k-i, 1) )}
    T(n,k) = {if(n==0, k==0, sum(j=k, n, n^(n-j)*binomial(n-1, j-1)*AS1(j,k)))} \\ Andrew Howroyd, Jan 20 2023

Formula

From Mélika Tebni, Jan 20 2023: (Start)
E.g.f. column k: (LambertW(-x) - log(1 + LambertW(-x)))^k / k!.
-Sum_{k=1..n/2} (-1)^k*T(n,k) = A071720(n+1), for n > 0.
-Sum_{k=1..n/2} (-1)^k*T(n,k) / (n-1) = A007830(n-2), for n > 1.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1, j-1)*A106828(j, k) for n > 0. (End)