cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000435 Normalized total height of all nodes in all rooted trees with n labeled nodes.

Original entry on oeis.org

0, 1, 8, 78, 944, 13800, 237432, 4708144, 105822432, 2660215680, 73983185000, 2255828154624, 74841555118992, 2684366717713408, 103512489775594200, 4270718991667353600, 187728592242564421568, 8759085548690928992256, 432357188322752488126152, 22510748754252398927872000
Offset: 1

Views

Author

Keywords

Comments

This is the sequence that started it all: the first sequence in the database!
The height h(V) of a node V in a rooted tree is its distance from the root. a(n) = Sum_{all nodes V in all n^(n-1) rooted trees on n nodes} h(V)/n.
In the trees which have [0, n-1] = (0, 1, ..., n-1) as their ordered set of nodes, the number of nodes at distance i from node 0 is f(n,i) = (n-1)...(n-i)(i+1)n^(j-1), 0 <= i < n-1, i+j = n-1 (and f(n,n-1) = (n-1)!): (n-1)...(n-i) counts the words coding the paths of length i from any node to 0, n^(j-1) counts the Pruefer codes of the rest, words build by iterated deletion of the greater node of degree 1 ... except the last one, (i+1), necessary pointing at the path. If g(n,i) = (n-1)...(n-i)n^j, i+j = n-1, f(n,i) = g(n,i) - g(n,i+1), g(n,i) = Sum_{k>=i} f(n,k), the sequence is Sum_{i=1..n-1} g(n,i). - Claude Lenormand (claude.lenormand(AT)free.fr), Jan 26 2001
If one randomly selects one ball from an urn containing n different balls, with replacement, until exactly one ball has been selected twice, the probability that this ball was also the second ball to be selected once is a(n)/n^n. See also A001865. - Matthew Vandermast, Jun 15 2004
a(n) is the number of connected endofunctions with no fixed points. - Geoffrey Critzer, Dec 13 2011
a(n) is the number of weakly connected simple digraphs on n labeled nodes where every node has out-degree 1. A digraph where all out-degrees are 1 can be called a functional digraph due to the correspondence with endofunctions. - Andrew Howroyd, Feb 06 2024

Examples

			For n = 3 there are 3^2 = 9 rooted labeled trees on 3 nodes, namely (with o denoting a node, O the root node):
   o
   |
   o     o   o
   |      \ /
   O       O
The first can be labeled in 6 ways and contains nodes at heights 1 and 2 above the root, so contributes 6*(1+2) = 18 to the total; the second can be labeled in 3 ways and contains 2 nodes at height 1 above the root, so contributes 3*2=6 to the total, giving 24 in all. Dividing by 3 we get a(3) = 24/3 = 8.
For n = 4 there are 4^3 = 64 rooted labeled trees on 4 nodes, namely (with o denoting a node, O the root node):
   o
   |
   o     o        o   o
   |     |         \ /
   o     o   o      o     o o o
   |      \ /       |      \|/
   O       O        O       O
  (1)     (2)      (3)     (4)
Tree (1) can be labeled in 24 ways and contains nodes at heights 1, 2, 3 above the root, so contributes 24*(1+2+3) = 144 to the total;
tree (2) can be labeled in 24 ways and contains nodes at heights 1, 1, 2 above the root, so contributes 24*(1+1+2) = 96 to the total;
tree (3) can be labeled in 12 ways and contains nodes at heights 1, 2, 2 above the root, so contributes 12*(1+2+2) = 60 to the total;
tree (4) can be labeled in 4 ways and contains nodes at heights 1, 1, 1 above the root, so contributes 4*(1+1+1) = 12 to the total;
giving 312 in all. Dividing by 4 we get a(4) = 312/4 = 78.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001863, A001864, A001854, A002862 (unlabeled version), A234953, A259334.
Column k=1 of A350452.

Programs

  • Maple
    A000435 := n-> (n-1)!*add (n^k/k!, k=0..n-2);
    seq(simplify((n-1)*GAMMA(n-1,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
  • Mathematica
    f[n_] := (n - 1)! Sum [n^k/k!, {k, 0, n - 2}]; Array[f, 18] (* Robert G. Wilson v, Aug 10 2010 *)
    nx = 18; Rest[ Range[0, nx]! CoefficientList[ Series[ LambertW[-x] - Log[1 + LambertW[-x]], {x, 0, nx}], x]] (* Robert G. Wilson v, Apr 13 2013 *)
  • PARI
    x='x+O('x^30); concat(0, Vec(serlaplace(lambertw(-x)-log(1+lambertw(-x))))) \\ Altug Alkan, Sep 05 2018
    
  • PARI
    A000435(n)=(n-1)*A001863(n) \\ M. F. Hasler, Dec 10 2018
    
  • Python
    from math import comb
    def A000435(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n # Chai Wah Wu, Apr 25-26 2023

Formula

a(n) = (n-1)! * Sum_{k=0..n-2} n^k/k!.
a(n) = A001864(n)/n.
E.g.f.: LambertW(-x) - log(1+LambertW(-x)). - Vladeta Jovovic, Apr 10 2001
a(n) = A001865(n) - n^(n-1).
a(n) = A001865(n) - A000169(n). - Geoffrey Critzer, Dec 13 2011
a(n) ~ sqrt(Pi/2)*n^(n-1/2). - Vaclav Kotesovec, Aug 07 2013
a(n)/A001854(n) ~ 1/2 [See Renyi-Szekeres, (4.7)]. Also a(n) = Sum_{k=0..n-1} k*A259334(n,k). - David desJardins, Jan 20 2017
a(n) = (n-1)*A001863(n). - M. F. Hasler, Dec 10 2018

Extensions

Additional references from Valery A. Liskovets
Editorial changes by N. J. A. Sloane, Feb 03 2012
Edited by M. F. Hasler, Dec 10 2018

A065440 a(n) = (n-1)^n.

Original entry on oeis.org

1, 0, 1, 8, 81, 1024, 15625, 279936, 5764801, 134217728, 3486784401, 100000000000, 3138428376721, 106993205379072, 3937376385699289, 155568095557812224, 6568408355712890625, 295147905179352825856, 14063084452067724991009, 708235345355337676357632
Offset: 0

Views

Author

Len Smiley, Nov 17 2001

Keywords

Comments

a(n) is the number of functions from {1,2,...,n} into {1,2,...,n} that have no fixed points.
The probability that a random function from {1,2,...,n} into {1,2,...,n} has no fixed point is equal to a(n)/n^n; it tends to 1/e when n tends to infinity. - Robert FERREOL, Mar 29 2017

Crossrefs

Essentially the same as A007778 - note T(x) = -W(-x).
Column k=0 of A055134.
Row sums of A350452.

Programs

Formula

a(n) = A007778(n-1).
E.g.f.: x/(T(x)*(1-T(x))) (where T(x) is Euler's tree function, the E.g.f. for n^(n-1)) (see A000169).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*n^(n-k). - Robert FERREOL, Mar 28 2017
a(n) = Sum_{k=0..n} (-1)^k*binomial(n+2,k+2)*(k+1)*(2*k+n+3)^n. - Vladimir Kruchinin, Aug 13 2025

A350446 Number T(n,k) of endofunctions on [n] with exactly k cycles of length larger than 1; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

Original entry on oeis.org

1, 1, 3, 1, 16, 11, 125, 128, 3, 1296, 1734, 95, 16807, 27409, 2425, 15, 262144, 499400, 61054, 945, 4782969, 10346328, 1605534, 42280, 105, 100000000, 240722160, 44981292, 1706012, 11025, 2357947691, 6222652233, 1351343346, 67291910, 763875, 945
Offset: 0

Views

Author

Alois P. Heinz, Dec 31 2021

Keywords

Examples

			Triangle T(n,k) begins:
           1;
           1;
           3,          1;
          16,         11;
         125,        128,          3;
        1296,       1734,         95;
       16807,      27409,       2425,       15;
      262144,     499400,      61054,      945;
     4782969,   10346328,    1605534,    42280,    105;
   100000000,  240722160,   44981292,  1706012,  11025;
  2357947691, 6222652233, 1351343346, 67291910, 763875, 945;
  ...
		

Crossrefs

Column k=0 gives A000272(n+1).
Row sums give A000312.
T(2n,n) gives A001147.

Programs

  • Maple
    c:= proc(n) option remember; add(n!*n^(n-k-1)/(n-k)!, k=2..n) end:
    t:= proc(n) option remember; n^(n-1) end:
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*binomial(n-1, i-1)*(c(i)*x+t(i)), i=1..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
    seq(T(n), n=0..12);
    # second Maple program:
    egf := k-> (LambertW(-x)-log(1+LambertW(-x)))^k/(exp(LambertW(-x))*k!):
    A350446 := (n, k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(print(seq(A350446(n, k), k=0..n/2)), n=0..10); # Mélika Tebni, Mar 23 2023
  • Mathematica
    c[n_] := c[n] = Sum[n!*n^(n - k - 1)/(n - k)!, {k, 2, n}];
    t[n_] := t[n] = n^(n - 1);
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[
         b[n - i]*Binomial[n - 1, i - 1]*(c[i]*x + t[i]), {i, 1, n}]]];
    T[n_] :=  With[{p = b[n]}, Table[Coefficient[p, x, i], {i, 0, n/2}]];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 06 2022, after Alois P. Heinz *)

Formula

From Mélika Tebni, Mar 23 2023: (Start)
E.g.f. of column k: (W(-x)-log(1 + W(-x)))^k / (exp(W(-x))*k!), W(x) the Lambert W-function.
T(n,k) = Sum_{j=k..n} n^(n-j)*binomial(n-1,j-1)*A136394(j,k), for n > 0.
T(n,k) = Sum_{j=k..n} (n-j+1)^(n-j-1)*binomial(n,j)*A350452(j,k).
Sum_{k=0..n/2} (k+1)*T(n,k) = A190314(n), for n > 0.
Sum_{k=0..n/2} 2^k*T(n,k) = A217701(n). (End)
Showing 1-3 of 3 results.