cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350504 Maximal coefficient of (1 + x) * (1 + x^3) * (1 + x^5) * ... * (1 + x^(2*n-1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 5, 8, 13, 22, 38, 68, 118, 211, 380, 692, 1262, 2316, 4277, 7930, 14745, 27517, 51541, 96792, 182182, 343711, 650095, 1231932, 2338706, 4447510, 8472697, 16164914, 30884150, 59086618, 113189168, 217091832, 416839177, 801247614, 1541726967, 2969432270
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 28 2022

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          expand((1+x^(2*n-1))*b(n-1)))
        end:
    a:= n-> max(coeffs(b(n))):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 28 2022
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Expand[(1 + x^(2*n - 1))*b[n - 1]]];
    a[n_] := Max[CoefficientList[b[n], x]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)
  • PARI
    a(n) = vecmax(Vec(prod(k=1, n, 1+x^(2*k-1)))); \\ Seiichi Manyama, Jan 28 2021

Formula

a(n) ~ sqrt(3) * 2^(n - 1/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 04 2022