A350575 Squarefree numbers k such that k + (k reversed) is also squarefree.
1, 3, 5, 7, 10, 11, 14, 15, 19, 21, 23, 30, 33, 34, 37, 41, 42, 43, 46, 51, 55, 58, 59, 61, 67, 69, 70, 73, 77, 78, 82, 85, 86, 87, 89, 91, 94, 95, 101, 102, 105, 106, 109, 111, 115, 118, 119, 130, 131, 134, 138, 139, 141, 142, 146, 149, 151, 155, 158, 159, 161, 166, 170, 174, 178, 181, 182, 185, 190, 191, 194, 195, 199
Offset: 1
Examples
14 is a term since it's squarefree and so is 14 + 41 = 55.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n): q:= n-> andmap(numtheory[issqrfree], [n, n+R(n)]): select(q, [$1..200])[]; # Alois P. Heinz, Jan 07 2022
-
Mathematica
okQ[n_] := SquareFreeQ[n] && SquareFreeQ[n + IntegerReverse[n]]; Select[Range[200], okQ]
-
PARI
isok(m) = issquarefree(m) && issquarefree(m+fromdigits(Vecrev(digits(m)))); \\ Michel Marcus, Jan 07 2022
-
Python
from sympy.ntheory.factor_ import core def squarefree(n): return core(n, 2) == n def ok(n): return squarefree(n) and squarefree(n + int(str(n)[::-1])) print([k for k in range(1, 200) if ok(k)]) # Michael S. Branicky, Jan 07 2022
Comments