A350593 Numbers k such that tau(k) + tau(k+1) = 6, where tau is the number of divisors function A000005.
5, 6, 7, 10, 13, 22, 37, 46, 58, 61, 73, 82, 106, 157, 166, 178, 193, 226, 262, 277, 313, 346, 358, 382, 397, 421, 457, 466, 478, 502, 541, 562, 586, 613, 661, 673, 718, 733, 757, 838, 862, 877, 886, 982, 997, 1018, 1093, 1153, 1186, 1201, 1213, 1237, 1282
Offset: 1
Keywords
Examples
k tau(k) tau(k+1) tau(k) + tau(k+1) -- ------ -------- ----------------- 1 1 2 1 + 2 = 3 2 2 2 2 + 2 = 4 3 2 3 2 + 3 = 5 4 3 2 3 + 2 = 5 5 2 4 2 + 4 = 6 so 5 = a(1) 6 4 2 4 + 2 = 6 so 6 = a(2) 7 2 4 2 + 4 = 6 so 7 = a(3) 8 4 3 4 + 3 = 7 9 3 4 3 + 4 = 7 10 4 2 4 + 2 = 6 so 10 = a(4) 11 2 6 2 + 6 = 8 12 6 2 6 + 2 = 8 13 2 4 2 + 4 = 6 so 13 = a(5)
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[1300], Plus @@ DivisorSigma[0, # + {0, 1}] == 6 &] (* Amiram Eldar, Jan 08 2022 *) Position[Total/@Partition[DivisorSigma[0,Range[1300]],2,1],6]//Flatten (* Harvey P. Dale, Sep 03 2022 *)
-
PARI
isok(k) = numdiv(k) + numdiv(k+1) == 6; \\ Michel Marcus, Jan 08 2022
-
Python
from itertools import count, islice from sympy import divisor_count def A350093_gen(): # generator of terms a, b = divisor_count(1), divisor_count(2) for k in count(1): if a + b == 6: yield k a, b = b, divisor_count(k+2) A350093_list = list(islice(A350093_gen(),12)) # Chai Wah Wu, Jan 11 2022
Formula
{ k : tau(k) + tau(k+1) = 6 }.
a(n) = A164977(n+1) for n>=4. - Hugo Pfoertner, Jan 08 2022
Comments