cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350669 Numerators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.

Original entry on oeis.org

1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427, 35567319917031991744, 250947670863258378883, 252846595191840484708, 13497714685925233086599
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2022

Keywords

Comments

For the denominators see A350670.
This sequence coincides with A025550(n+1), for n = 0, 1, ..., 37. See the comments there.
Thanks to Ralf Steiner for sending me a paper where this and similar sums appear.

Crossrefs

Cf. A001620, A025547, A025550, A111877 (denominators), A350670.

Programs

  • Magma
    [Numerator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1)))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    With[{H=HarmonicNumber}, Table[Numerator[2*H[2*n+2] -H[n+1]]/2 , {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
  • PARI
    a(n) = numerator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
    
  • SageMath
    [numerator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = numerator((Psi(n+3/2) + gamma + 2*log(2))/2), with the Digamma function Psi(z), and the Euler-Mascheroni constant gamma = A001620. See Abramowitz-Stegun, p. 258. 6.3.4.
a(n) = (1/2) * numerator of ( 2*H_{2*n+2} - H_{n+1} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023