A074599
Numerator of 2 * H(n,2,1), a generalized harmonic number. See A075135. Also 2 * A350669.
Original entry on oeis.org
2, 8, 46, 352, 1126, 13016, 176138, 182144, 3186538, 62075752, 63461422, 1488711776, 7577414602, 23104065256, 680057071574, 21372905414144, 21646396991594, 21904260478904, 819482859775298, 828045249930848
Offset: 1
-
Table[ Numerator[ Sum[1/i, {i, 1/2, n}]], {n, 1, 20}]
A025550
a(n) = ( 1/1 + 1/3 + 1/5 + ... + 1/(2*n-1) )*LCM(1, 3, 5, ..., 2*n-1).
Original entry on oeis.org
1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427
Offset: 1
-
a025550 n = numerator $ sum $ map (1 %) $ take n [1, 3 ..]
-- Reinhard Zumkeller, Jan 22 2012
-
[&+[1/d: d in i]*Lcm(i) where i is [1..2*n-1 by 2]: n in [1..21]]; // Bruno Berselli, Apr 16 2015
-
a:= n-> (f-> add(1/p, p=f)*ilcm(f[]))([2*i-1$i=1..n]):
seq(a(n), n=1..40); # Alois P. Heinz, Apr 16 2015
-
Table[(Total[1/Range[1,2n-1,2]])LCM@@Range[1,2n-1,2],{n,30}] (* Harvey P. Dale, Sep 09 2020 *)
-
a(n)=my(v=vector(n,i,2*i-1));sum(i=1,#v,1/v[i])*lcm(v) \\ Charles R Greathouse IV, Feb 28 2013
A350670
Denominators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.
Original entry on oeis.org
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725, 96845140757687397075, 96845140757687397075, 5132792460157432044975
Offset: 0
- Hugo Pfoertner, Table of n, a(n) for n = 0..100
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions. p. 258, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], p. 258.
- Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24.
- Comparison to A025547 using Plot 2.
-
[Denominator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1))): n in [0..40]]; // G. C. Greubel, Jul 24 2023
-
With[{H=HarmonicNumber}, Table[Denominator[2*H[2n+2] -H[n+1]], {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
-
a(n) = denominator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
-
[denominator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1)) for n in range(41)] # G. C. Greubel, Jul 24 2023
A355566
T(j,k) are the numerators u in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.
Original entry on oeis.org
0, 0, 1, -2, 2, 4, -12, 23, 2, 23, -184, 40, -118, 12, 176, -940, 3323, -1118, 499, 20, 563, -24526, 1234, -18412, 13462, -626, 118, 6508, -130424, 721937, -71230, 327143, -1312, 14369, 262, 88069, -4924064, 191776, -6601046, 2395676, -888568, 131972, -300766, 1624, 91072
Offset: 0
The triangle begins:
0;
0, 1;
-2, 2, 4;
-12, 23, 2, 23;
-184, 40, -118, 12, 176;
-940, 3323, -1118, 499, 20, 563;
-24526, 1234, -18412, 13462, -626, 118, 6508;
- See A211074 for references and links.
A355567 are the corresponding denominators v.
-
\\ uses function R(m, p, x) given in A355565
for (j=0, 8, for (k=0, j, my(q=(pi/2)*R(j,k)); print1(numerator(polcoef(q,0,pi)),", ")); print())
A111877
a(n) = denominator of 3*Sum_{j=0..n+1} 1/(2*j+1).
Original entry on oeis.org
1, 5, 35, 105, 1155, 15015, 15015, 255255, 4849845, 4849845, 111546435, 557732175, 1673196525, 48522699225, 1504203675975, 1504203675975, 1504203675975, 55655536011075, 55655536011075, 2281876976454075, 98120709987525225
Offset: 0
-
[Denominator((2*HarmonicNumber(2*n+4) - HarmonicNumber(n+2)))/3: n in [0..40]]; // G. C. Greubel, Jul 24 2023
-
f[x_]:= 2*x+1; a[1]= f[1]; a[n_]:= LCM[f[n], a[n-1]]; Array[a, 21]/3 (* Robert G. Wilson v, Jan 04 2013 *)
-
[denominator(2*harmonic_number(2*n+4,1) - harmonic_number(n+2,1))/3 for n in range(41)] # G. C. Greubel, Jul 24 2023
A352395
Denominator of Sum_{k=0..n} (-1)^k / (2*k+1).
Original entry on oeis.org
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725
Offset: 0
-
Denominator @ Accumulate @ Table[(-1)^k/(2*k + 1), {k, 0, 25}] (* Amiram Eldar, Apr 08 2022 *)
-
a(n) = denominator(sum(k=0, n, (-1)^k / (2*k+1))); \\ Michel Marcus, Apr 07 2022
-
from fractions import Fraction
def A352395(n): return sum(Fraction(-1 if k % 2 else 1,2*k+1) for k in range(n+1)).denominator # Chai Wah Wu, May 18 2022
Showing 1-6 of 6 results.
Comments