cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A074599 Numerator of 2 * H(n,2,1), a generalized harmonic number. See A075135. Also 2 * A350669.

Original entry on oeis.org

2, 8, 46, 352, 1126, 13016, 176138, 182144, 3186538, 62075752, 63461422, 1488711776, 7577414602, 23104065256, 680057071574, 21372905414144, 21646396991594, 21904260478904, 819482859775298, 828045249930848
Offset: 1

Views

Author

Robert G. Wilson v, Aug 27 2002

Keywords

Comments

2*(1 + 1/3 + ... + 1/(2*n-1))/Pi = a(n)/(A350670(n)*Pi) is the equivalent resistance between the points (0,0) and (n,n) on a 2-dimension infinite square grid of unit resistors. - Jianing Song, Apr 28 2025

Crossrefs

Cf. A350669. The denominators are in A350670.
Not always equal to the second left hand column of A161198 triangle divided by A025549. - Johannes W. Meijer, Jun 08 2009

Programs

  • Mathematica
    Table[ Numerator[ Sum[1/i, {i, 1/2, n}]], {n, 1, 20}]

A025550 a(n) = ( 1/1 + 1/3 + 1/5 + ... + 1/(2*n-1) )*LCM(1, 3, 5, ..., 2*n-1).

Original entry on oeis.org

1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427
Offset: 1

Views

Author

Keywords

Comments

Or, numerator of 1/1 + 1/3 + ... + 1/(2n-1) up to a(38).
Following similar remark by T. D. Noe in A025547, this coincides with f(n) = numerator of 1 + 1/3 + 1/5 + 1/7 + ... + 1/(2n-1) iff n <= 38. But a(39) = 18048708369314455836683437302413, f(39) = 1640791669937677803334857936583. Note that f(n) = numerator(digamma(n+1/2)/2 + log(2) + euler_gamma/2). - Paul Barry, Aug 19 2005 [See A350669(n-1).]
2*(1 + 1/3 + ... + 1/(2*n-1))/Pi = 2*a(n)/(A025547(n)*Pi) is the equivalent resistance between the points (0,0) and (n,n) on a 2-dimension infinite square grid of unit resistors. - Jianing Song, Apr 28 2025

Crossrefs

Programs

  • Haskell
    a025550 n = numerator $ sum  $ map (1 %) $ take n [1, 3 ..]
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [&+[1/d: d in i]*Lcm(i) where i is [1..2*n-1 by 2]: n in [1..21]]; // Bruno Berselli, Apr 16 2015
  • Maple
    a:= n-> (f-> add(1/p, p=f)*ilcm(f[]))([2*i-1$i=1..n]):
    seq(a(n), n=1..40);  # Alois P. Heinz, Apr 16 2015
  • Mathematica
    Table[(Total[1/Range[1,2n-1,2]])LCM@@Range[1,2n-1,2],{n,30}] (* Harvey P. Dale, Sep 09 2020 *)
  • PARI
    a(n)=my(v=vector(n,i,2*i-1));sum(i=1,#v,1/v[i])*lcm(v) \\ Charles R Greathouse IV, Feb 28 2013
    

Formula

1 + 1/3 + ... + 1/(2*n-1) = a(n)/A025547(n) = A350669(n-1)/A350670(n-1). - Jianing Song, Apr 28 2025

Extensions

Value of a(39) corrected by Jean-François Alcover, Apr 16 2015

A350670 Denominators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.

Original entry on oeis.org

1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725, 96845140757687397075, 96845140757687397075, 5132792460157432044975
Offset: 0

Views

Author

Wolfdieter Lang, Mar 16 2022

Keywords

Comments

For the numerators see A350669.
This sequence coincides with A025547(n+1), for n = 0, 1, ..., 37. See the comments there.
Thanks to Ralf Steiner for sending me a paper where this and similar sums appear.

Crossrefs

Cf. A001620, A025547, A025550, A350669 (numerators).

Programs

  • Magma
    [Denominator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1))): n in [0..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    With[{H=HarmonicNumber}, Table[Denominator[2*H[2n+2] -H[n+1]], {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
  • PARI
    a(n) = denominator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
    
  • SageMath
    [denominator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1)) for n in range(41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = denominator((Psi(n+3/2) + gamma + 2*log(2))/2), with the Digamma function Psi(z), and the Euler-Mascheroni constant gamma = A001620. See Abramowitz-Stegun, p. 258, 6.3.4.
a(n) = denominator of ( 2*H_{2*n+2} - H_{n+1} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023

A355566 T(j,k) are the numerators u in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.

Original entry on oeis.org

0, 0, 1, -2, 2, 4, -12, 23, 2, 23, -184, 40, -118, 12, 176, -940, 3323, -1118, 499, 20, 563, -24526, 1234, -18412, 13462, -626, 118, 6508, -130424, 721937, -71230, 327143, -1312, 14369, 262, 88069, -4924064, 191776, -6601046, 2395676, -888568, 131972, -300766, 1624, 91072
Offset: 0

Views

Author

Hugo Pfoertner, Jul 07 2022

Keywords

Comments

See A355565 for more information.
On the diagonal we have T(0,0) = 0 and T(n,n) = A350669(n-1) for n > 0. - Rainer Rosenthal, Aug 01 2022

Examples

			The triangle begins:
       0;
       0,    1;
      -2,    2,      4;
     -12,   23,      2,    23;
    -184,   40,   -118,    12,  176;
    -940, 3323,  -1118,   499,   20, 563;
  -24526, 1234, -18412, 13462, -626, 118, 6508;
		

References

  • See A211074 for references and links.

Crossrefs

A355567 are the corresponding denominators v.
A355565 and A131406 (with changed offset) are s and t.
Cf. A350669.

Programs

  • PARI
    \\ uses function R(m, p, x) given in A355565
    for (j=0, 8, for (k=0, j, my(q=(pi/2)*R(j,k)); print1(numerator(polcoef(q,0,pi)),", ")); print())

A111877 a(n) = denominator of 3*Sum_{j=0..n+1} 1/(2*j+1).

Original entry on oeis.org

1, 5, 35, 105, 1155, 15015, 15015, 255255, 4849845, 4849845, 111546435, 557732175, 1673196525, 48522699225, 1504203675975, 1504203675975, 1504203675975, 55655536011075, 55655536011075, 2281876976454075, 98120709987525225
Offset: 0

Views

Author

Paul Barry, Aug 19 2005

Keywords

Crossrefs

Cf. A001620, A025547, A350669 (numerators).

Programs

  • Magma
    [Denominator((2*HarmonicNumber(2*n+4) - HarmonicNumber(n+2)))/3: n in [0..40]]; // G. C. Greubel, Jul 24 2023
    
  • Mathematica
    f[x_]:= 2*x+1; a[1]= f[1]; a[n_]:= LCM[f[n], a[n-1]]; Array[a, 21]/3 (* Robert G. Wilson v, Jan 04 2013 *)
  • SageMath
    [denominator(2*harmonic_number(2*n+4,1) - harmonic_number(n+2,1))/3 for n in range(41)] # G. C. Greubel, Jul 24 2023

Formula

a(n) = denominator of (3/2)*(digamma(n+5/2) + 2*log(2) + euler_gamma).
a(n) = denominator of ( 3*Sum_{j=0..n+1} 1/(2*j+1) ).
a(n) = (1/3) * denominator of ( 2*H_{2*n+4} - H_{n+2} ), where H_{n} is the n-th Harmonic number. - G. C. Greubel, Jul 24 2023

Extensions

Name edited by G. C. Greubel, Jul 24 2023

A352395 Denominator of Sum_{k=0..n} (-1)^k / (2*k+1).

Original entry on oeis.org

1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725
Offset: 0

Views

Author

Wolfdieter Lang, Apr 06 2022

Keywords

Comments

This is not the sequence A025547(n+1)_{n>=0}, because a(32) = 1420993851085122917681925 but A025547(33) = 18472920064106597929865025. Hence it is also not the sequence A350670.
The alternating sum Sum_{k=0..n} (-1)^k/(2*k+1) = (Psi(n + 3/2) - Psi((2*n - (-1)^n)/4 + 1) - log(2) + Pi/2)/2, with the Digamma function Psi(z).
Proof by subtracting twice the negative fractions from Sum_{k=0..n} 1/(2*k+1) = A350669(n)/A350670(n) (Abramowitz-Stegun, p. 258, eq. 6.3.4.), using Sum_{j=0..k} 1/(4*j + 3) = A074637((k+1)/4)/A074638(k+1) (Abramowitz-Stegun, p. 258, eqs. 6.3.6. with 6.3.5.) and, finally, replacing in the results for the even and odd n cases the formula for Psi(3/4) = -A200134.

Crossrefs

Cf. A007509 (numerators).

Programs

  • Mathematica
    Denominator @ Accumulate @ Table[(-1)^k/(2*k + 1), {k, 0, 25}] (* Amiram Eldar, Apr 08 2022 *)
  • PARI
    a(n) = denominator(sum(k=0, n, (-1)^k / (2*k+1))); \\ Michel Marcus, Apr 07 2022
    
  • Python
    from fractions import Fraction
    def A352395(n): return sum(Fraction(-1 if k % 2 else 1,2*k+1) for k in range(n+1)).denominator # Chai Wah Wu, May 18 2022

Formula

a(n) = denominator( (Psi(n + 3/2) - Psi((2*n - (-1)^n)/4 + 1) - log(2) + Pi/2)/2), for n >= 0, with the Digamma function. See the above comment.
a(n) = denominator(Pi/4 + (-1)^n * (Psi((n + 5/2)/2) - Psi((n + 3/2)/2))/4). - Vaclav Kotesovec, May 16 2022
Showing 1-6 of 6 results.