A025547
Least common multiple of {1,3,5,...,2n-1}.
Original entry on oeis.org
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..200
- Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24.
- Eric Weisstein's World of Mathematics, Jeep Problem, Pi, Pi Continued Fraction, Least Common Multiple
- Wikipedia, Least common multiple
- Index entries for sequences related to lcm's
-
a025547 n = a025547_list !! (n-1)
a025547_list = scanl1 lcm a005408_list
-- Reinhard Zumkeller, Oct 25 2013, Apr 25 2011
-
A025547:=proc(n) local i,t1; t1:=1; for i from 1 to n do t1:=lcm(t1,2*i-1); od: t1; end;
f := n->denom(add(1/(2*k-1),k=0..n)); # a different sequence!
-
a = 1; Join[{1}, Table[a = LCM[a, n], {n, 3, 125, 2}]] (* Zak Seidov, Jan 18 2011 *)
nn=30;With[{c=Range[1,2*nn,2]},Table[LCM@@Take[c,n],{n,nn}]] (* Harvey P. Dale, Jan 27 2013 *)
-
a(n)=lcm(vector(n,k,2*k-1)) \\ Charles R Greathouse IV, Nov 20 2012
-
# generates initial segment of sequence
from math import gcd
from itertools import accumulate
def lcm(a, b): return a * b // gcd(a, b)
def aupton(nn): return list(accumulate((2*i+1 for i in range(nn)), lcm))
print(aupton(23)) # Michael S. Branicky, Mar 28 2022
A075135
Numerator of the generalized harmonic number H(n,3,1) described below.
Original entry on oeis.org
1, 5, 39, 209, 2857, 11883, 233057, 2632787, 13468239, 13739939, 433545709, 7488194853, 281072414761, 284780929571, 12393920563953, 288249495707519, 2038704876507433, 2058454144222533, 2077126179153173, 60750140156034617
Offset: 1
a(3)=39 because 1 + 1/4 + 1/7 = 39/28.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 263, 269, 272, 297, 302, 356.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1971, page 88.
-
a=3; b=1; maxN=20; s=0; Numerator[Table[s+=1/(a n + b), {n, 0, maxN-1}]]
Accumulate[1/Range[1,60,3]]//Numerator (* Harvey P. Dale, Dec 30 2019 *)
A120268
Numerator of Sum_{k=1..n} 1/(2*k-1)^2.
Original entry on oeis.org
1, 10, 259, 12916, 117469, 14312974, 2430898831, 487983368, 141433003757, 51174593563322, 51270597630767, 27164483940418988, 3400039831130408821, 30634921277843705014, 25789165074168004597399
Offset: 1
Fractions begin: 1, 10/9, 259/225, 12916/11025, 117469/99225, 14312974/12006225, 2430898831/2029052025, 487983368/405810405, ... = A120268/A128492.
-
[Numerator((&+[1/(2*k-1)^2: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
-
Numerator[Table[Sum[1/(2k-1)^2,{k,1,n}],{n,1,25}]]
Table[(PolyGamma[1, 1/2] - PolyGamma[1, n+1/2])/4 // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
Accumulate[1/(2*Range[20]-1)^2]//Numerator (* Harvey P. Dale, Jun 14 2020 *)
-
for(n=1,20, print1(numerator(sum(k=1,n, 1/(2*k-1)^2)), ", ")) \\ G. C. Greubel, Aug 23 2018
A355565
T(j,k) are the numerators s in the representation R = s/t + (2/Pi)*u/v of the resistance between two nodes separated by the distance vector (j,k) in an infinite square lattice of one-ohm resistors, where T(j,k), j >= 0, 0 <= k <= j, is a triangle read by rows.
Original entry on oeis.org
0, 1, 0, 2, -1, 0, 17, -4, 1, 0, 40, -49, 6, -1, 0, 401, -140, 97, -8, 1, 0, 1042, -1569, 336, -161, 10, -1, 0, 11073, -4376, 4321, -660, 241, -12, 1, 0, 29856, -48833, 13342, -9681, 1144, -337, 14, -1, 0, 325441, -136488, 160929, -33188, 18929, -1820, 449, -16, 1, 0
Offset: 0
The triangle begins:
0;
1, 0;
2, -1, 0;
17, -4, 1, 0;
40, -49, 6, -1, 0;
401, -140, 97, -8, 1, 0;
1042, -1569, 336, -161, 10, -1, 0
.
The combined triangles used to calculate the resistances are:
\ k 0 | 1 | 2 | 3 |
\ s/t u/v | s/t u/v | s/t u/v | s/t u/v |
j \---------------|-----------------|---------------|--------------|
0 | 0 0 | . . | . . | . . |
1 | 1/2 0 | 0 1 | . . | . . |
2 | 2 -2 | -1/2 2 | 0 4/3 | . . |
3 | 17/2 -12 | -4 23/3 | 1/2 2/3 | 0 23/15 |
4 | 40 -184/3 | - 49/2 40 | 6 -118/15 | -1/2 12/5 |
5 | 401/2 -940/3 | -140 3323/15 | 97/2 -1118/15 | -8 499/35 |
.
continued:
\ k 4 | 5 |
\ s/t u/v | s/t u/v |
j \-------------|--------------|
0 | . . | . . |
1 | . . | . . |
2 | . . | . . |
3 | . . | . . |
4 | 0 176/105 | . . |
5 | 1/2 20/21 | 0 563/315 |
.
E.g., the resistance for a node distance vector (4,1) is R = T(4,1)/A131406(5,2) + (2/Pi)*A355566(4,1)/A355567(4,1) = -49/2 + (2/Pi)*40/1 = 80/Pi - 49/2.
- See A211074 for more references and links.
- Rainer Rosenthal, Table of n, a(n) for n = 0..135, rows 0..15 of triangle, flattened.
- J. Cserti, Application of the lattice Green's function for calculating the resistance of infinite networks of resistors, arXiv:cond-mat/9909120 [cond-mat.mes-hall], 1999-2000.
- Hugo Pfoertner, Grid points sorted by increasing R values, (2022).
- Hugo Pfoertner, PARI program for inverse problem, (2022). Finds the grid point [x,y] that leads to the best approximation of a given resistance distance R (ohms) between [0,0] and [x,y].
- Physics Stack Exchange, On this infinite grid of resistors, what's the equivalent resistance? Answer by user PBS, Apr 21 2018.
- Rainer Rosenthal, Maple program
A131406 are the corresponding denominators t, with indices shifted by 1.
-
See link.
-
alphas[beta_] :=
Log[2 - Cos[beta] + Sqrt[3 + Cos[beta]*(Cos[beta] - 4)]];
Rsqu[n_, p_] :=
Simplify[(1/Pi)*
Integrate[(1 - Exp[-Abs[n]*alphas[beta]]*Cos[p*beta])/
Sinh[alphas[beta]], {beta, 0, Pi}]];
Table[Rsqu[n, k], {n, 0, 4}, {k, 0, n}] // TableForm (* Hugo Pfoertner, Aug 21 2022, calculates R, after Atkinson and Steenwijk *)
-
R(m,p,x=pi) = {if (m==0 && p==0, return(0)); if (m==1 && p==0, return(1/2)); if (m==1 && p==1, return(2/x)); if(m==p, my(mm=m-1); return(R(mm,mm)*4*mm/(2*mm+1) - R(mm-1,mm-1)*(2*mm-1)/(2*mm+1))); if (p==(m-1), my(mm=m-1); return(2*R(mm,mm) - R(mm,mm-1))); if (p==0, my(mm=m-1); return(4*R(mm,0) - R(mm-1,0) - 2*R(mm,1))); if (p0, my(mm=m-1); return(4*R(mm,p) - R(mm-1,p) - R(mm,p+1) - R(mm,p-1)))};
for(j=0,9,for(k=0,j,my(q=pi*R(j,k,pi));print1(numerator(polcoef(q,1,pi)),", "));print())
A074599
Numerator of 2 * H(n,2,1), a generalized harmonic number. See A075135. Also 2 * A350669.
Original entry on oeis.org
2, 8, 46, 352, 1126, 13016, 176138, 182144, 3186538, 62075752, 63461422, 1488711776, 7577414602, 23104065256, 680057071574, 21372905414144, 21646396991594, 21904260478904, 819482859775298, 828045249930848
Offset: 1
-
Table[ Numerator[ Sum[1/i, {i, 1/2, n}]], {n, 1, 20}]
A002428
Numerators of coefficients of expansion of arctan(x)^2 = x^2 - 2/3*x^4 + 23/45*x^6 - 44/105*x^8 + 563/1575*x^10 - 3254/10395*x^12 + ...
Original entry on oeis.org
0, 1, -2, 23, -44, 563, -3254, 88069, -11384, 1593269, -15518938, 31730711, -186088972, 3788707301, -5776016314, 340028535787, -667903294192, 10823198495797, -5476065119726, 409741429887649, -103505656241356, 17141894231615609
Offset: 1
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 89.
- H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 313.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
List([1..30], n-> NumeratorRat( (-1)^n*Sum([1..n-1], k-> 1/((n-1)*(2*k-1))) )) # G. C. Greubel, Jul 03 2019
-
[0] cat [Numerator((-1)^n*(&+[1/((n-1)*(2*k-1)): k in [1..n-1]])): n in [2..30]]; // G. C. Greubel, Jul 03 2019
-
a[n_]:= (-1)^n*Sum[1/((n-1)*(2*k-1)), {k,1,n-1}]//Numerator; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 04 2013 *)
a[n_]:= SeriesCoefficient[ArcTan[x]^2, {x, 0, 2*n-2}]//Numerator; Table[a[n], {n, 1, 30}] (* G. C. Greubel, Jul 03 2019 *)
-
vector(30, n, numerator((-1)^n*sum(k=1,n-1,1/((n-1)*(2*k-1))))) /* corrected by G. C. Greubel, Jul 03 2019 */
-
[numerator((-1)^n*sum(1/((n-1)*(2*k-1)) for k in (1..n-1))) for n in (1..30)] # G. C. Greubel, Jul 03 2019
A350669
Numerators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.
Original entry on oeis.org
1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427, 35567319917031991744, 250947670863258378883, 252846595191840484708, 13497714685925233086599
Offset: 0
-
[Numerator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1)))/2: n in [0..40]]; // G. C. Greubel, Jul 24 2023
-
With[{H=HarmonicNumber}, Table[Numerator[2*H[2*n+2] -H[n+1]]/2 , {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
-
a(n) = numerator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
-
[numerator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1))/2 for n in range(41)] # G. C. Greubel, Jul 24 2023
A350670
Denominators of Sum_{j=0..n} 1/(2*j+1), for n >= 0.
Original entry on oeis.org
1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535, 14549535, 334639305, 1673196525, 5019589575, 145568097675, 4512611027925, 4512611027925, 4512611027925, 166966608033225, 166966608033225, 6845630929362225, 294362129962575675, 294362129962575675, 13835020108241056725, 96845140757687397075, 96845140757687397075, 5132792460157432044975
Offset: 0
- Hugo Pfoertner, Table of n, a(n) for n = 0..100
- Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions. p. 258, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy], p. 258.
- Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24.
- Comparison to A025547 using Plot 2.
-
[Denominator((2*HarmonicNumber(2*n+2) - HarmonicNumber(n+1))): n in [0..40]]; // G. C. Greubel, Jul 24 2023
-
With[{H=HarmonicNumber}, Table[Denominator[2*H[2n+2] -H[n+1]], {n,0,50}]] (* G. C. Greubel, Jul 24 2023 *)
-
a(n) = denominator(sum(j=0, n, 1/(2*j+1))); \\ Michel Marcus, Mar 16 2022
-
[denominator(2*harmonic_number(2*n+2,1) - harmonic_number(n+1,1)) for n in range(41)] # G. C. Greubel, Jul 24 2023
A120269
Numerator of Sum_{k=1..n} 1/(2k-1)^4.
Original entry on oeis.org
1, 82, 51331, 123296356, 9988505461, 146251554055126, 4177234784807204311, 4177316109293528392, 348897735816424941428857, 45469045689642442391390873722, 45469276109166591994111574347
Offset: 1
-
[Numerator((&+[1/(2*k-1)^4: k in [1..n]])): n in [1..20]]; // G. C. Greubel, Aug 23 2018
-
Numerator[Table[Sum[1/(2k-1)^4,{k,1,n}],{n,1,20}]]
Table[(PolyGamma[3, 1/2] - PolyGamma[3, n + 1/2])/(3!*2^4) // Simplify // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
-
for(n=1,20, print1(numerator(sum(k=1,n, 1/(2*k-1)^4)), ", ")) \\ G. C. Greubel, Aug 23 2018
A164655
Numerators of partial sums of Theta(3) = Sum_{j>=1} 1/(2*j-1)^3.
Original entry on oeis.org
1, 28, 3527, 1213136, 32797547, 43684790932, 96017087247229, 96044168328256, 471956397645187853, 3237597973008257555852, 462561506842656976961, 5628425850334528955928112, 703596058798919360293439483, 18998011529681231695738912916, 463360571051954739540899597748949
Offset: 1
Rationals Theta(3,n): [1, 28/27, 3527/3375, 1213136/1157625, 32797547/31255875, 43684790932/41601569625, ...].
-
r[n_] := Sum[1/(2*j-1)^3, {j, 1, n}]; (* or r[n_] := (PolyGamma[2, n+1/2] - PolyGamma[2, 1/2])/16 // FullSimplify; *) Table[r[n] // Numerator, {n, 1, 15}] (* Jean-François Alcover, Dec 02 2013 *)
Showing 1-10 of 11 results.
Comments