cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A004041 Scaled sums of odd reciprocals: a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).

Original entry on oeis.org

1, 4, 23, 176, 1689, 19524, 264207, 4098240, 71697105, 1396704420, 29985521895, 703416314160, 17901641997225, 491250187505700, 14459713484342175, 454441401368236800, 15188465029114325025, 537928935889764226500
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

n-th elementary symmetric function of the first n+1 odd positive integers.
Also the determinant of the n X n matrix given by m(i,j) = 2*i + 2 = if i = j and otherwise 1. For example, Det[{{4, 1, 1, 1, 1, 1}, {1, 6, 1, 1, 1, 1}, {1, 1, 8, 1, 1, 1}, {1, 1, 1, 10, 1, 1}, {1, 1, 1, 1, 12, 1}, {1, 1, 1, 1, 1, 14}}] = 264207 = a(6). - John M. Campbell, May 20 2011

Examples

			(arctanh(x))^2 = x^2 + 2/3*x^4 + 23/45*x^6 + 44/105*x^8 + ...
		

Crossrefs

Cf. A002428.
From Johannes W. Meijer, Jun 08 2009: (Start)
Equals second left hand column of A028338 triangle.
Equals second right hand column of A109692 triangle.
Equals second left hand column of A161198 triangle divided by 2.
(End)

Programs

  • Mathematica
    Table[(-1)^(n + 1)* Sum[(-2)^(n - k) k (-1)^(n - k) StirlingS1[n + 1, k + 1], {k, 0, n}], {n, 1, 18}] (* Zerinvary Lajos, Jul 08 2009 *)
    FunctionExpand@Table[(2 n + 1)!! (Log[4] + HarmonicNumber[n + 1/2])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 13 2016 *)

Formula

a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
a(n) is coefficient of x^(2*n+2) in (arctanh x)^2, multiplied by (n + 1)*(2*n + 1)!!.
a(n) = Sum_{i=k+1..n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 1, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
a(n) ~ 2^(1/2)*log(n)*n*(2n/e)^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: 1/2*(1 - 2*x)^(-3/2)*(2 - log(1 - 2*x)). - Vladeta Jovovic, Feb 19 2003
Sum_{n>=1} a(n-1)/(n!*n*2^n) = (Pi/2)^2. - Philippe Deléham, Aug 12 2003
For n >= 1, a(n-1) = 2^(n-1)*n!*(Sum_{k=0..n-1} (-1)^k*binomial(1/2, k)/(n - k)). - Milan Janjic, Dec 14 2008
Recurrence: a(n) = 4*n*a(n-1) - (2*n - 1)^2*a(n-2). - Vladimir Reshetnikov, Oct 13 2016

A025550 a(n) = ( 1/1 + 1/3 + 1/5 + ... + 1/(2*n-1) )*LCM(1, 3, 5, ..., 2*n-1).

Original entry on oeis.org

1, 4, 23, 176, 563, 6508, 88069, 91072, 1593269, 31037876, 31730711, 744355888, 3788707301, 11552032628, 340028535787, 10686452707072, 10823198495797, 10952130239452, 409741429887649, 414022624965424, 17141894231615609, 743947082888833412, 750488463554668427
Offset: 1

Views

Author

Keywords

Comments

Or, numerator of 1/1 + 1/3 + ... + 1/(2n-1) up to a(38).
Following similar remark by T. D. Noe in A025547, this coincides with f(n) = numerator of 1 + 1/3 + 1/5 + 1/7 + ... + 1/(2n-1) iff n <= 38. But a(39) = 18048708369314455836683437302413, f(39) = 1640791669937677803334857936583. Note that f(n) = numerator(digamma(n+1/2)/2 + log(2) + euler_gamma/2). - Paul Barry, Aug 19 2005 [See A350669(n-1).]
2*(1 + 1/3 + ... + 1/(2*n-1))/Pi = 2*a(n)/(A025547(n)*Pi) is the equivalent resistance between the points (0,0) and (n,n) on a 2-dimension infinite square grid of unit resistors. - Jianing Song, Apr 28 2025

Crossrefs

Programs

  • Haskell
    a025550 n = numerator $ sum  $ map (1 %) $ take n [1, 3 ..]
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Magma
    [&+[1/d: d in i]*Lcm(i) where i is [1..2*n-1 by 2]: n in [1..21]]; // Bruno Berselli, Apr 16 2015
  • Maple
    a:= n-> (f-> add(1/p, p=f)*ilcm(f[]))([2*i-1$i=1..n]):
    seq(a(n), n=1..40);  # Alois P. Heinz, Apr 16 2015
  • Mathematica
    Table[(Total[1/Range[1,2n-1,2]])LCM@@Range[1,2n-1,2],{n,30}] (* Harvey P. Dale, Sep 09 2020 *)
  • PARI
    a(n)=my(v=vector(n,i,2*i-1));sum(i=1,#v,1/v[i])*lcm(v) \\ Charles R Greathouse IV, Feb 28 2013
    

Formula

1 + 1/3 + ... + 1/(2*n-1) = a(n)/A025547(n) = A350669(n-1)/A350670(n-1). - Jianing Song, Apr 28 2025

Extensions

Value of a(39) corrected by Jean-François Alcover, Apr 16 2015

A035048 Numerators of alternating sum transform (PSumSIGN) of Harmonic numbers H(n) = A001008/A002805.

Original entry on oeis.org

1, 1, 4, 3, 23, 11, 176, 25, 563, 137, 6508, 49, 88069, 363, 91072, 761, 1593269, 7129, 31037876, 7381, 31730711, 83711, 744355888, 86021, 3788707301, 1145993, 11552032628, 1171733, 340028535787, 1195757
Offset: 1

Views

Author

Keywords

Comments

p^2 divides a(2p-2) for prime p>3. a(2p-2)/p^2 = A061002(n) = A001008(p-1)/p^2 for prime p>2. - Alexander Adamchuk, Jul 07 2006

Crossrefs

Programs

  • Maple
    S:= series(log(1-x)/(x^2-1), x, 101):
    seq(numer(coeff(S,x,j)), j=1..100); # Robert Israel, Jun 02 2015
  • Mathematica
    Numerator[Table[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i,{i,1,k}],{k,1,n}],{n,1,50}]] (* Alexander Adamchuk, Jul 07 2006 *)
  • PARI
    a(n)=numerator(polcoeff(log(1-x)/(x^2-1)+O(x^(n+1)),n))

Formula

G.f. for A035048(n)/A035047(n) : log(1-x)/(x^2-1). - Benoit Cloitre, Jun 15 2003
a(n) = Numerator[Sum[(-1)^(k+1)*Sum[(-1)^(i+1)*1/i,{i,1,k}],{k,1,n}]]. - Alexander Adamchuk, Jul 07 2006
a(n) = numerator((-1)^(n+1)*1/2*(log(2)+(-1)^(n+1)*(gamma+1/2*(psi(1+n/2)-psi(3/2+n/2))+psi(2+n)))), with gamma the Euler-Mascheroni constant. - - Gerry Martens, Apr 28 2011

A002549 Numerators of coefficients of log(1+x)/sqrt(1+x).

Original entry on oeis.org

1, 1, 23, 11, 563, 1627, 88069, 1423, 1593269, 7759469, 31730711, 46522243, 3788707301, 2888008157, 340028535787, 41743955887, 10823198495797, 2738032559863, 409741429887649, 25876414060339, 17141894231615609
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    x='x+O('x^66); abs(apply(t->numerator(t),Vec(log(1+x)/sqrt(1+x)))) \\ Joerg Arndt, Apr 18 2014

Extensions

More terms from Benoit Cloitre, Mar 29 2002
a(15) corrected by Sean A. Irvine, Mar 24 2014
a(18) corrected by Sean A. Irvine, Apr 17 2014

A071968 Denominators of coefficients of expansion of arctan(x)^2 = x^2-2/3*x^4+23/45*x^6-44/105*x^8+563/1575*x^10-3254/10395*x^12+ ...

Original entry on oeis.org

1, 1, 3, 45, 105, 1575, 10395, 315315, 45045, 6891885, 72747675, 160044885, 1003917915, 21751554825, 35137127025, 2183521465125, 4512611027925, 76714387474725, 40613499251325, 3172365552631275
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2002

Keywords

Crossrefs

Cf. A002428.

Programs

  • Mathematica
    a[n_] := (-1)^(n+1)*Sum[1/(n*(2*k-1)), {k, 1, n}] // Denominator; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Nov 04 2013 *)

A231121 Denominators of coefficients of expansion of arctan(x)^3.

Original entry on oeis.org

1, 1, 15, 945, 175, 17325, 23648625, 1576575, 7309575, 1283268987, 3360942585, 1932541986375, 135664447443525, 218461268025, 242856109621125, 27604644460267875, 4479480941961650625, 1151866527932995875, 31580724596338947904875, 809762169136896100125, 4742892704944677157875
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[ArcTan[x]^3, {x, 0, 2*n+3}] // Denominator
    (* or *) a[n_] := 3*Sum[2^(i-2)*Binomial[2*(n+1), i-1]*StirlingS1[i, 3]/i!, {i, 3, 2n+3}] // Denominator; Table[a[n], {n, 0, 20}] (* from the formula given by Ruperto Corso in A002429 *)
    Take[Denominator[CoefficientList[Series[ArcTan[x]^3,{x,0,50}],x] ], {4,-1,2}] (* Harvey P. Dale, Apr 07 2017 *)

Formula

Let u(n) = (-1)^n/(2*n+1) and P(n,x) = u(n) + x*Sum_{i=0..n-1} u(i)*P(n-i-1,x), with P(0,x) = u(0). Then, the terms are the denominators of the coefficients of x^2 in each polynomial.
Showing 1-6 of 6 results.