A002428 Numerators of coefficients of expansion of arctan(x)^2 = x^2 - 2/3*x^4 + 23/45*x^6 - 44/105*x^8 + 563/1575*x^10 - 3254/10395*x^12 + ...
0, 1, -2, 23, -44, 563, -3254, 88069, -11384, 1593269, -15518938, 31730711, -186088972, 3788707301, -5776016314, 340028535787, -667903294192, 10823198495797, -5476065119726, 409741429887649, -103505656241356, 17141894231615609
Offset: 1
References
- A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 89.
- H. A. Rothe, in C. F. Hindenburg, editor, Sammlung Combinatorisch-Analytischer Abhandlungen, Vol. 2, Chap. XI. Fleischer, Leipzig, 1800, p. 313.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
GAP
List([1..30], n-> NumeratorRat( (-1)^n*Sum([1..n-1], k-> 1/((n-1)*(2*k-1))) )) # G. C. Greubel, Jul 03 2019
-
Magma
[0] cat [Numerator((-1)^n*(&+[1/((n-1)*(2*k-1)): k in [1..n-1]])): n in [2..30]]; // G. C. Greubel, Jul 03 2019
-
Mathematica
a[n_]:= (-1)^n*Sum[1/((n-1)*(2*k-1)), {k,1,n-1}]//Numerator; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 04 2013 *) a[n_]:= SeriesCoefficient[ArcTan[x]^2, {x, 0, 2*n-2}]//Numerator; Table[a[n], {n, 1, 30}] (* G. C. Greubel, Jul 03 2019 *)
-
PARI
vector(30, n, numerator((-1)^n*sum(k=1,n-1,1/((n-1)*(2*k-1))))) /* corrected by G. C. Greubel, Jul 03 2019 */
-
Sage
[numerator((-1)^n*sum(1/((n-1)*(2*k-1)) for k in (1..n-1))) for n in (1..30)] # G. C. Greubel, Jul 03 2019
Formula
a(n) = numerator of (-1)^n * Sum_{k=1..n-1} 1/((n-1)*(2*k-1)), for n>=1. - G. C. Greubel, Jul 03 2019
Extensions
More terms from Jason Earls, Apr 09 2002
Additional comments from Benoit Cloitre, Apr 06 2002
Comments