A350682 Möbius values of triangular numbers under divisibility relation.
1, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, 0, 0, 0, -1, 2, 0, -1, 0, 1, -1, 0, 0, -1, 0, 1, 2, 1, 0, -1, 1, 1, -1, 0, 1, 0, 1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, -1, 1, 0, 0, 0, 0, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000.
- Rohan Pandey and Harry Richman, The Möbius function of the poset of triangular numbers under divisibility, arXiv:2402.07934 [math.NT], 2024. See pp. 2, 7.
- Wikipedia, Möbius inversion formula on posets.
Programs
-
Mathematica
ZetaM = Table[If[Mod[i*(i + 1), j*(j + 1)] == 0, 1, 0], {i, 100}, {j, 100}]; MobiusM = LinearSolve[ZetaM, UnitVector[100, 1]] (* Harry Richman, Jan 23 2022 *)
-
PARI
lista(nn) = {my(v=vector(nn, k, k*(k+1)/2)); my(m=matrix(nn, nn, n, k, ! (v[n] % v[k]))); m = 1/m; vector(nn, k, m[k, 1]);} \\ Michel Marcus, Jan 19 2022
-
Python
from sympy import * triangular_numbers = ([(x * (x + 1) // 2) for x in range(1, 101)]) def Mobius_Matrix(lst): zeta_array = [[0 if n % m != 0 else 1 for n in lst] for m in lst] return Matrix(zeta_array) ** -1 M = Mobius_Matrix(triangular_numbers) N = M[0, :].tolist() print(N[0])
Comments