cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350682 Möbius values of triangular numbers under divisibility relation.

Original entry on oeis.org

1, -1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, 0, 0, 0, -1, 2, 0, -1, 0, 1, -1, 0, 0, -1, 0, 1, 2, 1, 0, -1, 1, 1, -1, 0, 1, 0, 1, 0, -1, 0, 0, -1, 0, 0, -1, 0, 1, -1, 1, 0, 0, 0, 0, -1, 0, 1, -1, 0, 0, -1, 0, 1, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0
Offset: 1

Views

Author

Rohan Pandey, Harry Richman, Jan 11 2022

Keywords

Comments

Consider the partial order whose elements are the triangular numbers (T(n) (A000217)) and whose order relation is integer divisibility. Then a(n) is the value mu(T(1), T(n)) of the Möbius function of this partial order.

Crossrefs

Programs

  • Mathematica
    ZetaM = Table[If[Mod[i*(i + 1), j*(j + 1)] == 0, 1, 0], {i, 100}, {j, 100}];
    MobiusM = LinearSolve[ZetaM, UnitVector[100, 1]] (* Harry Richman, Jan 23 2022 *)
  • PARI
    lista(nn) = {my(v=vector(nn, k, k*(k+1)/2)); my(m=matrix(nn, nn, n, k, ! (v[n] % v[k]))); m = 1/m; vector(nn, k, m[k, 1]);} \\ Michel Marcus, Jan 19 2022
  • Python
    from sympy import *
    triangular_numbers = ([(x * (x + 1) // 2) for x in range(1, 101)])
    def Mobius_Matrix(lst):
        zeta_array = [[0 if n % m != 0 else 1 for n in lst] for m in lst]
        return Matrix(zeta_array) ** -1
    M = Mobius_Matrix(triangular_numbers)
    N = M[0, :].tolist()
    print(N[0])