A350707 Numbers m such that all prime factors of m^2+1 are Fibonacci numbers.
0, 1, 2, 3, 5, 7, 8, 18, 34, 57, 144, 239, 322, 610, 1134903170
Offset: 1
Examples
57 is in the sequence because 57^2+1 = 2*5^3*13 and 2, 5 and 13 are Fibonacci numbers; 1134903170 = Fibonacci(45) is in the sequence because 1134903170^2+1 = 433494437*2971215073 = Fibonacci(43)*Fibonacci(47).
Crossrefs
Programs
-
Maple
with(numtheory): A005478:={2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497,1066340417491710595814572169, 19134702400093278081449423917}: for n from 0 to 11000 do: y:=factorset(n^2+1):n0:=nops(y): if A005478 intersect y = y then print(n): else fi: od:
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); isok(m) = my(f=factor(m^2+1)); for (i=1, #f~, if (!isfib(f[i,1]), return(0))); return(1); \\ Michel Marcus, Mar 29 2022
Comments