cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350707 Numbers m such that all prime factors of m^2+1 are Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 18, 34, 57, 144, 239, 322, 610, 1134903170
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2022

Keywords

Comments

The Fibonacci numbers in the sequence include 1, 2, 3, 5, 8, 144, 610 and 1134903170.
The sequence includes terms of the form sqrt(f(n) - 1) and sqrt(5 * f(n) - 1), where f(n) = Fibonacci(A281087(n)) * Fibonacci(A281087(n)+2) = A140362(n). - Daniel Suteu, Mar 29 2022

Examples

			57 is in the sequence because 57^2+1 = 2*5^3*13 and 2, 5 and 13 are Fibonacci numbers;
1134903170 = Fibonacci(45) is in the sequence because 1134903170^2+1 = 433494437*2971215073 = Fibonacci(43)*Fibonacci(47).
		

Crossrefs

The sequence contains A281618 and A285282.

Programs

  • Maple
    with(numtheory):
    A005478:={2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 99194853094755497,1066340417491710595814572169, 19134702400093278081449423917}:
    for n from 0 to 11000 do:
       y:=factorset(n^2+1):n0:=nops(y):
       if A005478 intersect y = y
           then
           print(n):
           else
         fi:
    od:
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isok(m) = my(f=factor(m^2+1)); for (i=1, #f~, if (!isfib(f[i,1]), return(0))); return(1); \\ Michel Marcus, Mar 29 2022