cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350717 a(n) = 4*a(n-1) - n - 1, for n > 0, a(0) = 1.

Original entry on oeis.org

1, 2, 5, 16, 59, 230, 913, 3644, 14567, 58258, 233021, 932072, 3728275, 14913086, 59652329, 238609300, 954437183, 3817748714, 15270994837, 61083979328, 244335917291, 977343669142, 3909374676545, 15637498706156, 62549994824599, 250199979298370, 1000799917193453, 4003199668773784
Offset: 0

Views

Author

Paul Curtz, Feb 03 2022

Keywords

Comments

Last digit (using 0 to 9) is of period 10: repeat [1, 2, 5, 6, 9, 0, 3, 4, 7, 8].

Crossrefs

Cf. A007583 (first differences), A014825, A160156.

Programs

  • Mathematica
    LinearRecurrence[{6, -9, 4}, {1, 2, 5}, 28] (* Amiram Eldar, Feb 03 2022 *)
  • PARI
    a(n) = if (n, 4*a(n-1) - n - 1, 1); \\ Michel Marcus, Feb 03 2022
    
  • Python
    print([(2**(2*n+1) + 3*n + 7)//9 for n in range(30)])
    # Gennady Eremin, Feb 05 2022

Formula

a(n) = (2^(2*n+1) + 3*n + 7)/9.
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3), n >= 3.
a(n) = a(n-1) + A007583(n-1).
a(n) = 2*a(n-1) + A014825(n-1).
G.f.: (-2*x^2 + 4*x - 1)/((x - 1)^2*(4*x - 1)). - Thomas Scheuerle, Feb 03 2022
a(n) = -1 + 5*a(n-1) - 4*a(n-2), n >= 2.
a(n) = 1 + A160156(n-1), n >= 1.

Extensions

More terms from Michel Marcus, Feb 03 2022