A350717 a(n) = 4*a(n-1) - n - 1, for n > 0, a(0) = 1.
1, 2, 5, 16, 59, 230, 913, 3644, 14567, 58258, 233021, 932072, 3728275, 14913086, 59652329, 238609300, 954437183, 3817748714, 15270994837, 61083979328, 244335917291, 977343669142, 3909374676545, 15637498706156, 62549994824599, 250199979298370, 1000799917193453, 4003199668773784
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (6,-9,4).
Programs
-
Mathematica
LinearRecurrence[{6, -9, 4}, {1, 2, 5}, 28] (* Amiram Eldar, Feb 03 2022 *)
-
PARI
a(n) = if (n, 4*a(n-1) - n - 1, 1); \\ Michel Marcus, Feb 03 2022
-
Python
print([(2**(2*n+1) + 3*n + 7)//9 for n in range(30)]) # Gennady Eremin, Feb 05 2022
Formula
a(n) = (2^(2*n+1) + 3*n + 7)/9.
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3), n >= 3.
a(n) = a(n-1) + A007583(n-1).
a(n) = 2*a(n-1) + A014825(n-1).
G.f.: (-2*x^2 + 4*x - 1)/((x - 1)^2*(4*x - 1)). - Thomas Scheuerle, Feb 03 2022
a(n) = -1 + 5*a(n-1) - 4*a(n-2), n >= 2.
a(n) = 1 + A160156(n-1), n >= 1.
Extensions
More terms from Michel Marcus, Feb 03 2022
Comments