cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350733 Triangle read by rows: T(n,k) is the number of oriented graphs on n unlabeled nodes with k arcs, n >= 0, k = 0..n*(n-1)/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 4, 10, 12, 10, 4, 1, 1, 4, 13, 41, 78, 131, 144, 107, 50, 12, 1, 1, 4, 14, 55, 187, 539, 1292, 2500, 3817, 4512, 4112, 2740, 1274, 376, 56, 1, 1, 4, 14, 58, 240, 1009, 3643, 11815, 32538, 76145, 149724, 247329, 340364, 387834, 361450, 271177, 159872, 71320, 22690, 4604, 456
Offset: 0

Views

Author

Andrew Howroyd, Jan 13 2022

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1;
  [2] 1, 1;
  [3] 1, 1, 3,  2;
  [4] 1, 1, 4, 10, 12, 10,   4;
  [5] 1, 1, 4, 13, 41, 78, 131, 144, 107, 50, 12;
  ...
		

Crossrefs

Row sums are A001174.
Cf. A350734.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2))}
    row(n)={my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+2*x^i)); Vecrev(s/n!)}
    { for(n=0, 6, print(row(n))) }