cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350745 Triangle read by rows: T(n,k) is the number of labeled loop-threshold graphs on vertex set [n] with k loops, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 84, 32, 1, 1, 80, 460, 460, 80, 1, 1, 192, 2190, 4600, 2190, 192, 1, 1, 448, 9534, 37310, 37310, 9534, 448, 1, 1, 1024, 39032, 264208, 483140, 264208, 39032, 1024, 1, 1, 2304, 152856, 1702344, 5229756, 5229756, 1702344, 152856, 2304, 1
Offset: 0

Views

Author

David Galvin, Jan 13 2022

Keywords

Comments

Loop-threshold graphs are constructed from either a single unlooped vertex or a single looped vertex by iteratively adding isolated vertices (adjacent to nothing previously added) and looped dominating vertices (looped, and adjacent to everything previously added).

Examples

			Triangle begins:
  1;
  1,    1;
  1,    4,      1;
  1,   12,     12,       1;
  1,   32,     84,      32,       1;
  1,   80,    460,     460,      80,       1;
  1,  192,   2190,    4600,    2190,     192,       1;
  1,  448,   9534,   37310,   37310,    9534,     448,      1;
  1, 1024,  39032,  264208,  483140,  264208,   39032,   1024,    1;
  1, 2304, 152856, 1702344, 5229756, 5229756, 1702344, 152856, 2304, 1;
  ...
		

Crossrefs

Row sums are A000629.
Columns k=0..1 give: A000012, A001787,
Cf. A210657.

Programs

  • Mathematica
    T[n_, 0] := T[n, 0] = 1; T[n_, k_] := T[n, k] = Binomial[n, k]*Sum[Factorial[l]*StirlingS2[k, l]*(Factorial[l - 1]*StirlingS2[n - k, l - 1] + 2*Factorial[l]*StirlingS2[n - k, l] + Factorial[l + 1]*StirlingS2[n - k, l + 1]), {l, 1, n + 1}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]
  • PARI
    T(n,k) = if(k==0, 1, binomial(n,k) * sum(j=1, n, j!*stirling(k,j,2) * ((j-1)! * stirling(n-k,j-1,2) + 2*j!*stirling(n-k,j,2) + (j+1)!*stirling(n-k,j+1,2)))) \\ Andrew Howroyd, May 06 2023

Formula

T(n,0) = 1; T(n,k) = binomial(n,k) * Sum_{j=1..n} j!*Stirling2(k,j) * ((j-1)! * Stirling2(n-k,j-1) + 2*j!*Stirling2(n-k,j) + (j+1)!*Stirling2(n-k,j+1)).
T(n,k) = T(n,n-k).
Sum_{k=0..2*n} (-1)^k * T(2*n,k) = A210657(n). - Alois P. Heinz, Feb 01 2022