A350747 Number of iterations required to terminate trajectory mapping described in A349824.
0, 1, 0, 0, 8, 0, 9, 0, 7, 4, 8, 0, 3, 0, 7, 8, 7, 0, 6, 0, 1, 2, 2, 0, 5, 2, 1, 0, 0, 0, 0, 0, 6, 0, 7, 6, 4, 0, 6, 7, 3, 0, 5, 0, 2, 1, 6, 0, 8, 1, 5, 4, 5, 0, 3, 7, 6, 3, 11, 0, 9, 0, 10, 8, 11, 5, 9, 0, 9, 6, 6, 0, 10
Offset: 0
Keywords
Examples
For n = 6, the trajectory is 6, 10, 14, 18, 24, 36, 40, 44, 45, 33, ... so a(6) = 9. For n = 24, the trajectory is 24, 36, 40, 44, 45, 33, ... so a(24) = 5.
Programs
-
Maple
with(numtheory): A001222:= n -> bigomega(n): A001414:= proc(n) local e, j; e:=ifactors(n)[2]; add(e[j][1] * e[j][2],j= 1..nops(e)) end proc : B := n-> A001414(n) * A001222(n): g:= proc(n) if isprime(n) or n=0 or n=27 or n=28 or n=30 or n=33 then return 0 else return 1 fi end proc: F:= proc(n) local v,i; v:=n;if n = 1 then return 1 else if g(n)=0 then return 0 else for i from 0 to 100 do v:= B(v);if v=27 or v=28 or v=30 or v=33 then return i+1; i:=100 fi od fi fi end proc : Seq(F(n), n=0..100)
Extensions
More terms from Jinyuan Wang, Jan 15 2022
Edited by Wolfdieter Lang, Feb 09 2022
Comments