A350787 Convolution of A001654 and A007598.
0, 0, 1, 3, 12, 38, 122, 372, 1119, 3301, 9624, 27756, 79380, 225384, 636061, 1785639, 4990116, 13889618, 38524238, 106514652, 293668923, 807608137, 2215854384, 6066935640, 16579195560, 45226399440, 123173004985, 334955873739, 909611388732, 2466965351678, 6682629071522
Offset: 0
Examples
For n=2, a(2) = F(0)*F(1)*F(2)^2 + F(1)*F(2)*F(1)^2 + F(2)*F(3)*F(0)^2 = 1.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,0,-10,0,4,-1).
Programs
-
Mathematica
Table[Sum[Fibonacci[i]*Fibonacci[i + 1]*Fibonacci[n - i]^2, {i, 0, n}], {n, 0, 30}]
-
PARI
a(n) = sum(i=0, n, fibonacci(i)*fibonacci(i+1)*fibonacci(n-i)^2); \\ Michel Marcus, Jan 17 2022
Formula
a(n) = Sum_{i=0..n} F(i)*F(i+1)*F(n-i)^2.
a(n) = ((n + 2)/5)*F(n)*F(n+1) - (3/25)*(F(2*n+2) + (n + 1)*(-1)^(n + 1)).
G.f.: x^2*(1-x)/((x+1)*(x^2-3*x+1))^2.
a(n) = 4*a(n-1) - 10*a(n-3) + 4*a(n-5) - a(n-6) for n > 5. - Amiram Eldar, Jan 17 2022
Comments