A350880 a(n) is the constant term in expansion of Product_{k=1..n} (x^prime(k) + 1 + 1/x^prime(k)).
1, 1, 1, 3, 5, 7, 17, 39, 95, 233, 561, 1435, 3643, 9417, 24973, 66695, 177915, 475629, 1293017, 3517223, 9636365, 26676197, 73848517, 205382439, 571628347, 1588203787, 4435819313, 12474619295, 35194448271, 99782519701, 283514955585, 799783925547
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..400
Programs
-
Maple
s:= proc(n) s(n):= `if`(n<1, 0, ithprime(n)+s(n-1)) end: b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=0, 1, b(n, i-1)+b(n+ithprime(i), i-1)+b(abs(n-ithprime(i)), i-1))) end: a:= n-> b(0, n): seq(a(n), n=0..40); # Alois P. Heinz, Dec 28 2023
-
Mathematica
s[n_] := s[n] = If[n < 1, 0, Prime[n] + s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 0, 1, b[n, i-1] + b[n + Prime[i], i-1] + b[Abs[n - Prime[i]], i-1]]]; a[n_] := b[0, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 27 2025, after Alois P. Heinz *)
-
PARI
a(n) = polcoef (prod(k=1, n, x^prime(k) + 1 + 1/x^prime(k)), 0); \\ Michel Marcus, Jan 21 2022
Comments