cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350881 a(n) is the constant term in expansion of Product_{k=1..n} (x^prime(k) + 1/x^prime(k))^2.

Original entry on oeis.org

1, 2, 4, 10, 24, 50, 140, 368, 1152, 3682, 11784, 39902, 134612, 463066, 1635092, 5818384, 20684072, 73693068, 266943648, 967762792, 3533666568, 13036452946, 48102671884, 178315730764, 661567489568, 2450447537226, 9123572154720, 34201574126260
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 20 2022

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember; `if`(n=0, 1,
          p(n-1)*(x^ithprime(n)+1/x^ithprime(n))^2)
        end:
    a:= n-> coeff(p(n), x, 0):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 26 2022
  • Mathematica
    p[n_] := p[n] = If[n == 0, 1, p[n - 1]*(x^Prime[n] + 1/x^Prime[n])^2];
    a[n_] := Coefficient[p[n], x, 0];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)
  • PARI
    a(n) = polcoef (prod(k=1, n, (x^prime(k) + 1/x^prime(k))^2), 0); \\ Michel Marcus, Jan 21 2022