A350881 a(n) is the constant term in expansion of Product_{k=1..n} (x^prime(k) + 1/x^prime(k))^2.
1, 2, 4, 10, 24, 50, 140, 368, 1152, 3682, 11784, 39902, 134612, 463066, 1635092, 5818384, 20684072, 73693068, 266943648, 967762792, 3533666568, 13036452946, 48102671884, 178315730764, 661567489568, 2450447537226, 9123572154720, 34201574126260
Offset: 0
Keywords
Programs
-
Maple
p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*(x^ithprime(n)+1/x^ithprime(n))^2) end: a:= n-> coeff(p(n), x, 0): seq(a(n), n=0..30); # Alois P. Heinz, Jan 26 2022
-
Mathematica
p[n_] := p[n] = If[n == 0, 1, p[n - 1]*(x^Prime[n] + 1/x^Prime[n])^2]; a[n_] := Coefficient[p[n], x, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)
-
PARI
a(n) = polcoef (prod(k=1, n, (x^prime(k) + 1/x^prime(k))^2), 0); \\ Michel Marcus, Jan 21 2022