A350894 Number of partitions of n such that (smallest part) = 3*(number of parts).
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 14, 15, 17, 18, 20, 22, 24, 26, 29, 31, 34, 37, 40, 43, 47, 50, 54, 58, 62, 66, 71, 75, 80, 85, 90, 95, 102, 107, 114, 121, 129, 136, 146, 154, 165, 175, 187, 198, 213
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
PARI
my(N=99, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, sqrtint(N\3), x^(3*k^2)/prod(j=1, k-1, 1-x^j))))
Formula
G.f.: Sum_{k>=1} x^(3*k^2)/Product_{j=1..k-1} (1-x^j).
a(n) ~ (1 - alfa) * exp(2*sqrt(n*(3*log(alfa)^2 + polylog(2, 1 - alfa)))) * (3*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(6 - 5*alfa) * n^(3/4)), where alfa = 0.7780895986786010978806823096592944458720784440255... is positive real root of the equation alfa^6 + alfa - 1 = 0. - Vaclav Kotesovec, Jan 22 2022