A350897 Number of partitions of n such that 5*(smallest part) = (number of parts).
0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 55, 65, 74, 87, 99, 115, 131, 151, 172, 199, 226, 260, 298, 343, 393, 454, 522, 603, 696, 804, 929, 1076, 1243, 1438, 1664, 1924, 2222, 2567, 2961, 3413, 3931, 4520, 5193, 5959, 6827, 7811, 8928, 10186, 11607, 13208, 15008, 17028, 19297
Offset: 1
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
CoefficientList[Series[Sum[x^(5k^2)/Product[1-x^j,{j,5k-1}],{k,62}],{x,0,62}],x] (* Stefano Spezia, Jan 22 2022 *)
-
PARI
my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, sqrtint(N\5), x^(5*k^2)/prod(j=1, 5*k-1, 1-x^j))))
Formula
G.f.: Sum_{k>=1} x^(5*k^2)/Product_{j=1..5*k-1} (1-x^j).
a(n) ~ c * exp(Pi*sqrt(r*n)) / n^(3/4), where r = 0.42067169741517... and c = 0.04778365700734... - Vaclav Kotesovec, Jan 26 2022
a(n) ~ r^2 * (5*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((5*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(5*Pi*(5 - 3*r^2)) * n^(3/4)), where r = 0.808730600479392... is the real root of the equation r^2 = 1 - r^5. - Vaclav Kotesovec, Oct 14 2024
Comments