cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350897 Number of partitions of n such that 5*(smallest part) = (number of parts).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 55, 65, 74, 87, 99, 115, 131, 151, 172, 199, 226, 260, 298, 343, 393, 454, 522, 603, 696, 804, 929, 1076, 1243, 1438, 1664, 1924, 2222, 2567, 2961, 3413, 3931, 4520, 5193, 5959, 6827, 7811, 8928, 10186, 11607, 13208, 15008, 17028, 19297
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

In general, for m >= 1, if g.f.= Sum_{k>=1} x^(m*k^2)/Product_{j=1..m*k-1} (1-x^j), then a(n) ~ r^2 * (m*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((m*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(Pi*m*(m - (m-2)*r^2)) * n^(3/4)), where r is the positive real root of the equation r^2 = 1 - r^m. - Vaclav Kotesovec, Oct 14 2024

Crossrefs

Column 5 of A350889.
Cf. A168657.

Programs

  • Mathematica
    CoefficientList[Series[Sum[x^(5k^2)/Product[1-x^j,{j,5k-1}],{k,62}],{x,0,62}],x] (* Stefano Spezia, Jan 22 2022 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, sqrtint(N\5), x^(5*k^2)/prod(j=1, 5*k-1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(5*k^2)/Product_{j=1..5*k-1} (1-x^j).
a(n) ~ c * exp(Pi*sqrt(r*n)) / n^(3/4), where r = 0.42067169741517... and c = 0.04778365700734... - Vaclav Kotesovec, Jan 26 2022
a(n) ~ r^2 * (5*log(r)^2 + polylog(2, r^2))^(1/4) * exp(2*sqrt((5*log(r)^2 + polylog(2, r^2))*n)) / (2*sqrt(5*Pi*(5 - 3*r^2)) * n^(3/4)), where r = 0.808730600479392... is the real root of the equation r^2 = 1 - r^5. - Vaclav Kotesovec, Oct 14 2024