A351008 Alternately strict partitions. Number of even-length integer partitions y of n such that y_i > y_{i+1} for all odd i.
1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, 23, 28, 34, 41, 50, 60, 71, 85, 102, 120, 142, 168, 197, 231, 271, 316, 369, 429, 497, 577, 668, 770, 888, 1023, 1175, 1348, 1545, 1767, 2020, 2306, 2626, 2990, 3401, 3860, 4379, 4963, 5616, 6350, 7173, 8093
Offset: 0
Examples
The a(3) = 1 through a(13) = 12 partitions (A..C = 10..12): 21 31 32 42 43 53 54 64 65 75 76 41 51 52 62 63 73 74 84 85 61 71 72 82 83 93 94 3221 81 91 92 A2 A3 4221 4321 A1 B1 B2 5221 4331 4332 C1 5321 5331 5332 6221 5421 5431 6321 6331 7221 6421 7321 8221 a(10) = 6: the six partitions 64, 73, 82, 91, 4321 and 5221 listed above have conjugate partitions 222211, 2221111, 22111111, 211111111, 4321 and 43111, These are the partitions of 10 with largest part L even and such that every odd number less than L appears at least once as a part. - _Peter Bala_, Jan 02 2024
Crossrefs
Programs
-
Maple
series(add(q^(n*(n+2))/mul(1 - q^k, k = 1..2*n), n = 0..10), q, 141): seq(coeftayl(%, q = 0, n), n = 0..140); # Peter Bala, Jan 03 2025
-
Mathematica
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]
Formula
G.f.: Sum_{n >= 0} q^(n*(n+2))/Product_{k = 1..2*n} 1 - q^k = 1 + q^3 + q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 4*q^8 + 5*q^9 + 6*q^10 + .... - Peter Bala, Jan 02 2024
Comments