cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A351005 Number of integer partitions of n into parts that are alternately equal and unequal.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 2, 4, 2, 5, 4, 6, 4, 8, 5, 10, 6, 12, 8, 16, 9, 18, 12, 22, 14, 28, 16, 33, 20, 40, 24, 48, 28, 56, 34, 67, 40, 80, 46, 94, 56, 110, 64, 130, 75, 152, 88, 176, 102, 206, 118, 238, 138, 276, 159, 320, 182, 368, 210, 424, 242, 488, 276, 558
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

Also partitions whose multiplicities are all 2's, except possibly for the last, which may be 1.

Examples

			The a(1) = 1 through a(12) = 6 partitions (A..C = 10..12):
  1  2   3  4   5    6     7    8     9    A     B      C
     11     22  221  33    331  44    441  55    443    66
                     2211       332        442   551    552
                                3311       3322  33221  4422
                                           4411         5511
                                                        332211
		

Crossrefs

The even-length ordered version is A003242, ranked by A351010.
The even-length case is A035457.
Without equalities we have A122135, opposite A122129, even-length A122134.
The non-strict version is A351004, opposite A351003, even-length A035363.
The opposite version is A351006, even-length A351007.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]

A351006 Number of integer partitions of n into parts that are alternately unequal and equal.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 4, 6, 7, 9, 10, 12, 14, 16, 18, 22, 25, 28, 31, 36, 40, 46, 50, 56, 64, 71, 78, 88, 96, 106, 118, 130, 143, 158, 172, 190, 209, 228, 248, 274, 298, 324, 354, 384, 418, 458, 494, 536, 584, 631, 683, 742, 800, 864, 936, 1010, 1088, 1176, 1264
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Examples

			The a(1) = 1 through a(11) = 12 partitions (A = 10, B = 11):
  1  2  3   4    5    6    7    8     9      A      B
        21  31   32   42   43   53    54     64     65
            211  41   51   52   62    63     73     74
                 311  411  61   71    72     82     83
                           322  422   81     91     92
                           511  611   522    433    A1
                                3221  711    622    533
                                      4221   811    722
                                      32211  5221   911
                                             42211  4331
                                                    6221
                                                    52211
		

Crossrefs

Without equalities we have A122129, opposite A122135, even-length A351008.
The non-strict version is A351003, opposite A351004, even-length A351012.
The alternately equal and unequal version is A351005, even-length A035457.
The even-length case is A351007.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

A122129 Expansion of 1 + Sum_{k>0} x^k^2/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 30, 37, 46, 57, 69, 84, 102, 123, 148, 177, 211, 252, 299, 353, 417, 491, 576, 675, 789, 920, 1071, 1244, 1442, 1670, 1929, 2224, 2562, 2946, 3381, 3876, 4437, 5072, 5791, 6602, 7517, 8551, 9714, 11021, 12493, 14145
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
a(n) = number of SE partitions of n, for n >= 1; see A237981. - Clark Kimberling, Mar 19 2014
In Watson 1937 page 275 he writes "Psi_0(1,q) = prod_1^oo (1+q^{2n}) G(q^8)" so this is the expansion in powers of q^2. - Michael Somos, Jun 28 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(x) (see A003114), H(x) (A003106).
From Gus Wiseman, Feb 19 2022: (Start)
This appears to be the number of integer partitions of n with every other pair of adjacent parts strictly decreasing, as in the pattern a > b >= c > d >= e for a partition (a, b, c, d, e). For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(311) (321) (61) (71) (72)
(411) (322) (422) (81)
(421) (431) (432)
(511) (521) (522)
(611) (531)
(3221) (621)
(711)
(4221)
(32211)
The even-length case is A351008. The odd-length case appears to be A122130. Swapping strictly and weakly decreasing relations appears to give A122135. The alternately unequal and equal case is A351006, strict A035457, opposite A351005, even-length A351007. (End)
Wiseman's first conjecture above was proved by Gordon, Theorem 7. For two other combinatorial interpretations of this sequence see Connor, Proposition 1. - Peter Bala, Dec 22 2024

Examples

			Clark Kimberling's SE partition comment, n=6: the 5 SE partitions are [1,1,1,1,1,1] from the partitions 6 and 1^6; [1,1,1,2,1] from 5,1 and 2,1^4; [1,1,3,1] from 4,2 and 2^2,1^2; [2,3,1] from 3,2,1 and 3^2 and 2^3; and [1,2,2,1] from 4,1^2 and 3,1^3. - _Wolfdieter Lang_, Mar 20 2014
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 9*x^8 + ...
G.f. = 1/q + q^39 + q^79 + 2*q^119 + 3*q^159 + 4*q^199 + 5*q^239 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.7). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(a), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012.
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1, 0,
           1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1]
          [1+irem(d, 20)], d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 12 2013
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Sum[d*{0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1}[[1+Mod[d, 20]]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 10 2014, after Alois P. Heinz *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ x, x, 2 k], {k, 0, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20]), {x, 0, n}]; (* Michael Somos, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), x^k^2 / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n-k^2)))), n))};

Formula

Euler transform of period 20 sequence [ 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, ...].
Expansion of f(-x^2) * f(-x^20) / (f(-x) * f(-x^4,-x^16)) in powers of x where f(,) is the Ramanujan general theta function.
Expansion of f(x^3, x^7) / f(-x, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 28 2015
Expansion of f(-x^8, -x^12) / psi(-x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jun 28 2015
Expansion of G(x^4) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 28 2015
G.f.: Sum_{k>=0} x^k^2 / ((1 - x) * (1 - x^2) ... (1 - x^(2*k))).
G.f.: 1 / (Product_{k>0} (1 - x^(2*k-1)) * (1 - x^(20*k-4)) * (1 - x^(20*k-16))).
Let f(n) = 1/Product_{k >= 0} (1 - q^(20k+n)). Then g.f. is f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19). - N. J. A. Sloane, Mar 19 2012
a(n) is the number of partitions of n into parts that are either odd or == +-4 (mod 20). - Michael Somos, Jun 28 2015
a(n) ~ (3+sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A122135 Expansion of f(x, -x^4) / phi(-x^2) in powers of x where f(, ) and phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 26, 31, 40, 48, 60, 72, 89, 106, 130, 154, 186, 220, 264, 310, 370, 433, 512, 598, 704, 818, 958, 1110, 1293, 1494, 1734, 1996, 2308, 2650, 3052, 3496, 4014, 4584, 5248, 5980, 6825, 7760, 8834, 10020, 11380, 12882, 14594
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of integer partitions y of n such that y_i > y_{i+1} for all even i. For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (331) (71) (81)
(2211) (421) (332) (432)
(3211) (431) (441)
(521) (531)
(3311) (621)
(4211) (3321)
(4311)
(5211)
The even-length case appears to be A122134.
The odd-length case is A351595.
The alternately unequal version appears to be A122129, even A351008, odd A122130.
The alternately equal version is A351003, even A351012, odd A000009.
The alternately equal and unequal version is A351005, even A035457, odd A351593.
The alternately unequal and equal version is A351006, even A351007, odd A053251. (End)
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 4. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 7*x^7 + 10*x^8 + ...
G.f. = q^9 + q^49 + 2*q^89 + 2*q^129 + 3*q^169 + 4*q^209 + 6*q^249 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.5). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(d), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, -x^5] QPochhammer[ x^4, -x^5] QPochhammer[-x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+1))*(1 - x^(20*k+2))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+8))*(1 - x^(20*k+9))*(1 - x^(20*k+11))*(1 - x^(20*k+12))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+18))*(1 - x^(20*k+19)) ), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1) - 1) \2, x^(k^2 + k) / prod(i=1, 2*k+1, 1 - x^i, 1 + x * O(x^(n-k^2-k)))), n))};

Formula

Expansion of f(x^2, x^8) / f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^3, -x^7) * f(-x^4, -x^16) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, ...].
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1))).
Let f(n) = 1/Product_{k >= 0} (1-q^(20k+n)). Then g.f. is f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19); - N. J. A. Sloane, Mar 19 2012.
a(n) ~ (3 + sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016

A351003 Number of integer partitions y of n such that y_i = y_{i+1} for all even i.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 28, 36, 42, 51, 62, 75, 88, 106, 124, 147, 173, 202, 236, 278, 320, 371, 431, 497, 572, 661, 756, 867, 993, 1132, 1291, 1474, 1672, 1898, 2155, 2439, 2756, 3117, 3512, 3957, 4458, 5008, 5624, 6316, 7072, 7919, 8862, 9899
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (411)     (511)
                                     (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The ordered version (compositions) is A027383.
The version for unequal instead of equal is A122135, even-length A351008.
For odd instead of even indices we have A351004, even-length A035363.
Requiring inequalities at odd positions gives A351006, even-length A351007.
The even-length case is A351012.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,10}]

A351007 Number of even-length integer partitions of n into parts that are alternately unequal and equal.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 10, 13, 14, 16, 18, 20, 23, 27, 28, 32, 37, 40, 44, 51, 54, 60, 67, 73, 81, 90, 96, 107, 118, 127, 139, 154, 166, 181, 198, 213, 232, 256, 273, 297, 325, 348, 377, 411, 440, 476, 516, 555, 598, 647, 692, 746, 807
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

These are partitions whose multiplicities begin with a 1, are followed by any number of 2's, and end with another 1.

Examples

			The a(3) = 1 through a(15) = 13 partitions (A..E = 10..14):
  21  31  32  42  43  53    54    64    65    75    76    86    87
          41  51  52  62    63    73    74    84    85    95    96
                  61  71    72    82    83    93    94    A4    A5
                      3221  81    91    92    A2    A3    B3    B4
                            4221  5221  A1    B1    B2    C2    C3
                                        4331  4332  C1    D1    D2
                                        6221  5331  5332  5441  E1
                                              7221  6331  6332  5442
                                                    8221  7331  6441
                                                          9221  7332
                                                                8331
                                                                A221
                                                                433221
		

Crossrefs

The alternately equal and unequal version is A035457, any length A351005.
This is the even-length case of A351006, odd-length A053251.
Without equalities we have A351008, any length A122129, opposite A122135.
Without inequalities we have A351012, any length A351003, opposite A351004.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

A351004 Alternately constant partitions. Number of integer partitions y of n such that y_i = y_{i+1} for all odd i.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 4, 7, 7, 10, 9, 15, 13, 21, 19, 28, 26, 40, 35, 54, 49, 72, 64, 97, 87, 128, 115, 167, 151, 220, 195, 284, 256, 366, 328, 469, 421, 598, 537, 757, 682, 959, 859, 1204, 1085, 1507, 1354, 1880, 1694, 2338, 2104, 2892, 2609, 3574, 3218, 4394
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

These are partitions of n with all even multiplicities (or run-lengths), except possibly the last.

Examples

			The a(1) = 1 through a(9) = 7 partitions:
  1  2   3    4     5      6       7        8         9
     11  111  22    221    33      331      44        333
              1111  11111  222     22111    332       441
                           2211    1111111  2222      22221
                           111111           3311      33111
                                            221111    2211111
                                            11111111  111111111
		

Crossrefs

The ordered version (compositions) is A016116.
The even-length case is A035363.
A reverse version is A096441, both A349060.
The version for unequal instead of equal is A122129, even-length A351008.
The version for even instead of odd indices is A351003, even-length A351012.
The strict version is A351005, opposite A351006, even-length A035457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

A351012 Number of even-length integer partitions y of n such that y_i = y_{i+1} for all even i.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 5, 6, 9, 10, 13, 16, 21, 24, 29, 35, 43, 50, 60, 70, 83, 97, 113, 132, 156, 178, 206, 239, 275, 316, 365, 416, 477, 545, 620, 706, 806, 912, 1034, 1173, 1326, 1496, 1691, 1902, 2141, 2410, 2704, 3034, 3406, 3808, 4261, 4765, 5317, 5932, 6617
Offset: 0

Views

Author

Gus Wiseman, Feb 03 2022

Keywords

Examples

			The a(2) = 1 through a(8) = 9 partitions:
  (11)  (21)  (22)    (32)    (33)      (43)      (44)
              (31)    (41)    (42)      (52)      (53)
              (1111)  (2111)  (51)      (61)      (62)
                              (3111)    (2221)    (71)
                              (111111)  (4111)    (2222)
                                        (211111)  (3221)
                                                  (5111)
                                                  (311111)
                                                  (11111111)
		

Crossrefs

The ordered version (compositions) is A027383(n-2).
For odd instead of even indices we have A035363, any length A351004.
The version for unequal parts appears to be A122134, any length A122135.
This is the even-length case of A351003.
Requiring inequalities at odd positions gives A351007, any length A351006.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]

A122130 Expansion of f(-x^4, -x^16) / psi(-x) in powers of x where psi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 22, 27, 34, 41, 50, 61, 73, 88, 106, 126, 150, 179, 211, 249, 294, 345, 404, 473, 551, 642, 747, 865, 1002, 1159, 1336, 1539, 1771, 2033, 2331, 2670, 3052, 3485, 3976, 4527, 5150, 5854, 6642, 7530, 8529, 9647, 10902
Offset: 0

Views

Author

Michael Somos, Aug 21 2006, corrected Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 19 2022: (Start)
This appears to be the number of odd-length alternately strict integer partitions of n + 1, i.e., partitions y such that y_i != y_{i+1} for all odd i. For example, the a(1) = 1 through a(9) = 7 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(211) (311) (321) (322) (422) (432)
(411) (421) (431) (522)
(511) (521) (531)
(611) (621)
(711)
(32211)
The even-length version is A351008. Including even-length partitions appears to give A122129. Swapping strictly and weakly decreasing relations gives A351595. The constant instead of strict version is A351594. (End)
Wiseman's first conjecture above was proved by Connor, Proposition 2. - Peter Bala, Dec 22 2024

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 9*x^9 + ...
G.f. = q^31 + q^71 + q^111 + 2*q^151 + 2*q^191 + 3*q^231 + 4*q^271 + 5*q^311 + ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(b), p. 591.
  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.8). MR0858826 (88b:11063)

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(20*k-8))*(1-x^(20*k-12))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[x, x^2] QPochhammer[x^8, x^20] QPochhammer[x^12, x^20]), {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
    a[ n_] := SeriesCoefficient[ Sqrt[2] x^(1/8) QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20] QPochhammer[x^20] / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}] // Simplify; (* Michael Somos, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, sqrtint(n+1), x^(k^2-1) / prod(i=1, 2*k-1, 1 - x^i, 1 + x * O(x^(n-k^2+1)))), n))};

Formula

Expansion of f(x, x^9) / f(-x^2, -x^3) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^2) * f(-x^20) / (f(-x) * f(-x^8, -x^12)) in powers of x where f(-x) : = f(-x, -x^2) and f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, ...].
G.f.: Sum_{k>0} x^(k^2 - 1) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2k-1))).
G.f.: 1/(Product_{k>0} (1-x^(2k-1))(1-x^(20k-8))(1-x^(20k-12))).
a(n) ~ (3-sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A351595 Number of odd-length integer partitions y of n such that y_i > y_{i+1} for all even i.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 16, 20, 24, 30, 35, 44, 52, 63, 74, 90, 105, 126, 148, 175, 204, 242, 280, 330, 382, 446, 515, 600, 690, 800, 919, 1060, 1214, 1398, 1595, 1830, 2086, 2384, 2711, 3092, 3506, 3988, 4516, 5122, 5788, 6552, 7388, 8345
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2022

Keywords

Examples

			The a(1) = 1 through a(12) = 10 partitions (A..C = 10..12):
  1   2   3   4   5     6     7     8     9     A     B       C
                  221   321   331   332   432   442   443     543
                              421   431   441   532   542     552
                                    521   531   541   551     642
                                          621   631   632     651
                                                721   641     732
                                                      731     741
                                                      821     831
                                                      33221   921
                                                              43221
		

Crossrefs

The ordered version (compositions) is A000213 shifted right once.
All odd-length partitions are counted by A027193.
The opposite appears to be A122130, even-length A351008, any length A122129.
This appears to be the odd-length case of A122135, even-length A122134.
The case that is constant at odd indices:
- any length: A351005
- odd length: A351593
- even length: A035457
- opposite any length: A351006
- opposite odd length: A053251
- opposite even length: A351007
For equality instead of inequality:
- any length: A351003
- odd-length: A000009 (except at 0)
- even-length: A351012
- opposite any length: A351004
- opposite odd-length: A351594
- opposite even-length: A035363

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]>#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]
Showing 1-10 of 12 results. Next