cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A053251 Coefficients of the '3rd-order' mock theta function psi(q).

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 19, 22, 24, 27, 31, 34, 37, 42, 46, 51, 57, 62, 68, 76, 83, 91, 101, 109, 120, 132, 143, 156, 171, 186, 202, 221, 239, 259, 283, 306, 331, 360, 388, 420, 455, 490, 529, 572, 616, 663, 716, 769, 827
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

Number of partitions of n into odd parts such that if a number occurs as a part then so do all smaller positive odd numbers.
Number of ways to express n as a partial sum of 1 + [1,3] + [1,5] + [1,7] + [1,9] + .... E.g., a(6)=2 because we have 6 = 1+1+1+1+1+1 = 1+3+1+1. - Jon Perry, Jan 01 2004
Also number of partitions of n such that the largest part occurs exactly once and all the other parts occur exactly twice. Example: a(9)=4 because we have [9], [7,1,1], [5,2,2] and [3,2,2,1,1]. - Emeric Deutsch, Mar 08 2006
Number of partitions (d1,d2,...,dm) of n such that 0 < d1/1 < d2/2 < ... < dm/m. - Seiichi Manyama, Mar 17 2018
For Emeric Deutsch's comment above, (1) this appears to be an alternately equal case of A122130, (2) the ordered version (compositions) is A239327, (3) allowing any length gives A351006, (4) the even-length version is A351007. - Gus Wiseman, Feb 25 2022

Examples

			q + q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ...
From _Seiichi Manyama_, Mar 17 2018: (Start)
n | Partition (d1,d2,...,dm) | (d1/1, d2/2, ... , dm/m)
--+--------------------------+-------------------------
1 | (1)                      | (1)
2 | (2)                      | (2)
3 | (3)                      | (3)
4 | (4)                      | (4)
  | (1, 3)                   | (1, 3/2)
5 | (5)                      | (5)
  | (1, 4)                   | (1, 2)
6 | (6)                      | (6)
  | (1, 5)                   | (1, 5/2)
7 | (7)                      | (7)
  | (1, 6)                   | (1, 3)
  | (2, 5)                   | (2, 5/2)
8 | (8)                      | (8)
  | (1, 7)                   | (1, 7/2)
  | (2, 6)                   | (2, 3)
9 | (9)                      | (9)
  | (1, 8)                   | (1, 4)
  | (2, 7)                   | (2, 7/2)
  | (1, 3, 5)                | (1, 3/2, 5/3) (End)
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.13).
  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31.

Crossrefs

Other '3rd-order' mock theta functions are at A000025, A053250, A053252, A053253, A053254, A053255.
Cf. A003475.

Programs

  • Maple
    f:=n->q^(n^2)/mul((1-q^(2*i+1)),i=0..n-1); add(f(i),i=1..6);
    # second Maple program:
    b:= proc(n, i) option remember; (s-> `if`(n>s, 0, `if`(n=s, 1,
          b(n, i-1)+b(n-i, min(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= n-> `if`(n=0, 0, add(b(j, min(j, n-2*j-1)), j=0..iquo(n, 2))):
    seq(a(n), n=0..80);  # Alois P. Heinz, May 17 2018
  • Mathematica
    Series[Sum[q^n^2/Product[1-q^(2k-1), {k, 1, n}], {n, 1, 10}], {q, 0, 100}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Function[s, If[n > s, 0, If[n == s, 1, b[n, i - 1] + b[n - i, Min[n - i, i - 1]]]]][i*(i + 1)/2];
    a[n_] := If[n==0, 0, Sum[b[j, Min[j, n-2*j-1]], {j, 0, Quotient[n, 2]}]];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 17 2018, after Alois P. Heinz *)
  • PARI
    { n=20; v=vector(n); for (i=1,n,v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2,n, k=length(v[i-1]); for (j=1,k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]+2*i-1)); c=vector(n); for (i=1,n, for (j=1,2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
    
  • PARI
    {a(n) = local(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k-1) / (1 - x^(2*k-1)) + O(x^(n-(k-1)^2+1))), n))} /* Michael Somos, Sep 04 2007 */

Formula

G.f.: psi(q) = Sum_{n>=1} q^(n^2) / ( (1-q)*(1-q^3)*...*(1-q^(2*n-1)) ).
G.f.: Sum_{k>=1} q^k*Product_{j=1..k-1} (1+q^(2*j)) (see the Fine reference, p. 58, Eq. (26,53)). - Emeric Deutsch, Mar 08 2006
a(n) ~ exp(Pi*sqrt(n/6)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 09 2019

Extensions

More terms from Emeric Deutsch, Mar 08 2006

A351006 Number of integer partitions of n into parts that are alternately unequal and equal.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 4, 6, 7, 9, 10, 12, 14, 16, 18, 22, 25, 28, 31, 36, 40, 46, 50, 56, 64, 71, 78, 88, 96, 106, 118, 130, 143, 158, 172, 190, 209, 228, 248, 274, 298, 324, 354, 384, 418, 458, 494, 536, 584, 631, 683, 742, 800, 864, 936, 1010, 1088, 1176, 1264
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Examples

			The a(1) = 1 through a(11) = 12 partitions (A = 10, B = 11):
  1  2  3   4    5    6    7    8     9      A      B
        21  31   32   42   43   53    54     64     65
            211  41   51   52   62    63     73     74
                 311  411  61   71    72     82     83
                           322  422   81     91     92
                           511  611   522    433    A1
                                3221  711    622    533
                                      4221   811    722
                                      32211  5221   911
                                             42211  4331
                                                    6221
                                                    52211
		

Crossrefs

Without equalities we have A122129, opposite A122135, even-length A351008.
The non-strict version is A351003, opposite A351004, even-length A351012.
The alternately equal and unequal version is A351005, even-length A035457.
The even-length case is A351007.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

A357639 Number of reversed integer partitions of 2n whose half-alternating sum is 0.

Original entry on oeis.org

1, 0, 2, 1, 6, 4, 15, 13, 37, 37, 86, 94, 194, 223, 416, 497, 867, 1056, 1746, 2159, 3424, 4272, 6546, 8215, 12248, 15418, 22449, 28311, 40415, 50985, 71543, 90222, 124730, 157132, 214392, 269696, 363733, 456739, 609611, 763969, 1010203, 1263248, 1656335, 2066552, 2688866
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			The a(0) = 1 through a(6) = 15 reversed partitions:
  ()  .  (112)   (123)  (134)       (145)      (156)
         (1111)         (224)       (235)      (246)
                        (2222)      (11233)    (336)
                        (11222)     (1111123)  (3333)
                        (1111112)              (11244)
                        (11111111)             (11334)
                                               (12333)
                                               (1111134)
                                               (1111224)
                                               (1112223)
                                               (1122222)
                                               (11112222)
                                               (111111222)
                                               (11111111112)
                                               (111111111111)
		

Crossrefs

The non-reverse version is A035363/A035444.
The non-reverse skew version appears to be A035544/A035594.
These partitions are ranked by A357631, skew A357632.
The skew-alternating version is A357640.
This is the central column of A357704.
A000041 counts integer partitions (also reversed integer partitions).
A316524 gives alternating sum of prime indices, reverse A344616.
A344651 counts alternating sum of partitions by length, ordered A097805.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.
A357637 counts partitions by half-alternating sum, skew A357637.

Programs

  • Mathematica
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[2n],halfats[Reverse[#]]==0&]],{n,0,15}]

Extensions

a(31) onwards from Lucas A. Brown, Oct 19 2022

A357637 Triangle read by rows where T(n,k) is the number of integer partitions of n with half-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 1, 1, 3, 0, 0, 0, 2, 2, 3, 0, 0, 0, 0, 5, 2, 4, 0, 0, 0, 0, 2, 6, 3, 4, 0, 0, 0, 0, 2, 3, 9, 3, 5, 0, 0, 0, 0, 0, 4, 7, 10, 4, 5, 0, 0, 0, 0, 0, 0, 11, 8, 13, 4, 6, 0, 0, 0, 0, 0, 0, 4, 15, 12, 14, 5, 6, 0, 0, 0, 0, 0, 0, 3, 7, 25, 13, 17, 5, 7
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  1  2
  0  0  1  1  3
  0  0  0  2  2  3
  0  0  0  0  5  2  4
  0  0  0  0  2  6  3  4
  0  0  0  0  2  3  9  3  5
  0  0  0  0  0  4  7 10  4  5
  0  0  0  0  0  0 11  8 13  4  6
  0  0  0  0  0  0  4 15 12 14  5  6
  0  0  0  0  0  0  3  7 25 13 17  5  7
Row n = 9 counts the following partitions:
  (3222)       (333)      (432)     (441)  (9)
  (22221)      (3321)     (522)     (531)  (54)
  (21111111)   (4221)     (4311)    (621)  (63)
  (111111111)  (32211)    (5211)    (711)  (72)
               (222111)   (6111)           (81)
               (2211111)  (33111)
               (3111111)  (42111)
                          (51111)
                          (321111)
                          (411111)
		

Crossrefs

Row sums are A000041.
Number of nonzero entries in row n appears to be A004525(n+1).
Last entry of row n is A008619(n).
Column sums appear to be A029862.
The central column is A035363, skew A035544.
For original alternating sum we have A344651, ordered A097805.
The skew-alternating version is A357638.
The central column of the reverse is A357639, skew A357640.
The ordered version (compositions) is A357645, skew A357646.
The reverse version is A357704, skew A357705.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Maple
    b:= proc(n, i, s, t) option remember; `if`(n=0, x^s, `if`(i<1, 0,
          b(n, i-1, s, t)+b(n-i, min(n-i, i), s+`if`(t<2, i, -i), irem(t+1, 4))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=-n..n, 2))(b(n$2, 0$2)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Oct 12 2022
  • Mathematica
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[n],halfats[#]==k&]],{n,0,12},{k,-n,n,2}]

Formula

Conjecture: The column sums are A029862.

A122129 Expansion of 1 + Sum_{k>0} x^k^2/((1-x)(1-x^2)...(1-x^(2k))).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 30, 37, 46, 57, 69, 84, 102, 123, 148, 177, 211, 252, 299, 353, 417, 491, 576, 675, 789, 920, 1071, 1244, 1442, 1670, 1929, 2224, 2562, 2946, 3381, 3876, 4437, 5072, 5791, 6602, 7517, 8551, 9714, 11021, 12493, 14145
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
a(n) = number of SE partitions of n, for n >= 1; see A237981. - Clark Kimberling, Mar 19 2014
In Watson 1937 page 275 he writes "Psi_0(1,q) = prod_1^oo (1+q^{2n}) G(q^8)" so this is the expansion in powers of q^2. - Michael Somos, Jun 28 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(x) (see A003114), H(x) (A003106).
From Gus Wiseman, Feb 19 2022: (Start)
This appears to be the number of integer partitions of n with every other pair of adjacent parts strictly decreasing, as in the pattern a > b >= c > d >= e for a partition (a, b, c, d, e). For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(311) (321) (61) (71) (72)
(411) (322) (422) (81)
(421) (431) (432)
(511) (521) (522)
(611) (531)
(3221) (621)
(711)
(4221)
(32211)
The even-length case is A351008. The odd-length case appears to be A122130. Swapping strictly and weakly decreasing relations appears to give A122135. The alternately unequal and equal case is A351006, strict A035457, opposite A351005, even-length A351007. (End)
Wiseman's first conjecture above was proved by Gordon, Theorem 7. For two other combinatorial interpretations of this sequence see Connor, Proposition 1. - Peter Bala, Dec 22 2024

Examples

			Clark Kimberling's SE partition comment, n=6: the 5 SE partitions are [1,1,1,1,1,1] from the partitions 6 and 1^6; [1,1,1,2,1] from 5,1 and 2,1^4; [1,1,3,1] from 4,2 and 2^2,1^2; [2,3,1] from 3,2,1 and 3^2 and 2^3; and [1,2,2,1] from 4,1^2 and 3,1^3. - _Wolfdieter Lang_, Mar 20 2014
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 9*x^8 + ...
G.f. = 1/q + q^39 + q^79 + 2*q^119 + 3*q^159 + 4*q^199 + 5*q^239 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.7). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(a), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012.
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, 1, 0,
           1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1]
          [1+irem(d, 20)], d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 12 2013
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Sum[d*{0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1}[[1+Mod[d, 20]]], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 10 2014, after Alois P. Heinz *)
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 / QPochhammer[ x, x, 2 k], {k, 0, Sqrt @ n}], {x, 0, n}]]; (* Michael Somos, Jun 28 2015 *)
    a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20]), {x, 0, n}]; (* Michael Somos, Jun 28 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), x^k^2 / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n-k^2)))), n))};

Formula

Euler transform of period 20 sequence [ 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, ...].
Expansion of f(-x^2) * f(-x^20) / (f(-x) * f(-x^4,-x^16)) in powers of x where f(,) is the Ramanujan general theta function.
Expansion of f(x^3, x^7) / f(-x, -x^4) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 28 2015
Expansion of f(-x^8, -x^12) / psi(-x) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Jun 28 2015
Expansion of G(x^4) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 28 2015
G.f.: Sum_{k>=0} x^k^2 / ((1 - x) * (1 - x^2) ... (1 - x^(2*k))).
G.f.: 1 / (Product_{k>0} (1 - x^(2*k-1)) * (1 - x^(20*k-4)) * (1 - x^(20*k-16))).
Let f(n) = 1/Product_{k >= 0} (1 - q^(20k+n)). Then g.f. is f(1)*f(3)*f(4)*f(5)*f(7)*f(9)*f(11)*f(13)*f(15)*f(16)*f(17)*f(19). - N. J. A. Sloane, Mar 19 2012
a(n) is the number of partitions of n into parts that are either odd or == +-4 (mod 20). - Michael Somos, Jun 28 2015
a(n) ~ (3+sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A357638 Triangle read by rows where T(n,k) is the number of integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 3, 1, 1, 0, 0, 1, 4, 1, 1, 0, 0, 1, 4, 4, 1, 1, 0, 0, 0, 4, 5, 4, 1, 1, 0, 0, 0, 1, 10, 5, 4, 1, 1, 0, 0, 0, 1, 5, 13, 5, 4, 1, 1, 0, 0, 0, 0, 4, 13, 14, 5, 4, 1, 1, 0, 0, 0, 0, 1, 13, 17, 14, 5, 4, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  0  3  1  1
  0  0  1  4  1  1
  0  0  1  4  4  1  1
  0  0  0  4  5  4  1  1
  0  0  0  1 10  5  4  1  1
  0  0  0  1  5 13  5  4  1  1
  0  0  0  0  4 13 14  5  4  1  1
  0  0  0  0  1 13 17 14  5  4  1  1
  0  0  0  0  1  5 28 18 14  5  4  1  1
Row n = 7 counts the following partitions:
  .  .  .  (322)      (43)      (52)     (61)  (7)
           (331)      (421)     (511)
           (2221)     (3211)    (4111)
           (1111111)  (22111)   (31111)
                      (211111)
		

Crossrefs

Row sums are A000041.
Number of nonzero entries in row n appears to be A004396(n+1).
First nonzero entry of each row appears to converge to A146325.
The central column is A035544, half A035363.
Column sums appear to be A298311.
For original alternating sum we have A344651, ordered A097805.
The half-alternating version is A357637.
The ordered version (compositions) is A357646, half A357645.
The reverse version is A357705, half A357704.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[n],skats[#]==k&]],{n,0,12},{k,-n,n,2}]

Formula

Conjecture: The columns are palindromes with sums A298311.

A357629 Half-alternating sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 1, 4, 4, 5, 0, 6, 5, 5, 0, 7, 1, 8, -1, 6, 6, 9, -1, 6, 7, 2, -2, 10, 0, 11, 1, 7, 8, 7, -2, 12, 9, 8, -2, 13, -1, 14, -3, 1, 10, 15, 2, 8, 1, 9, -4, 16, -1, 8, -3, 10, 11, 17, -3, 18, 12, 0, 2, 9, -2, 19, -5, 11, 0, 20, 1, 21, 13, 2, -6
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 525 are {2,3,3,4} so a(525) = 2 + 3 - 3 - 4 = -2.
		

Crossrefs

The original alternating sum is A316524, reverse A344616.
The version for standard compositions is A357621, reverse A357622.
The skew-alternating form is A357630, reverse A357634.
Positions of zeros are A357631, reverse A357635.
The reverse version is A357633.
These partitions are counted by A357637, skew A357638.
A056239 adds up prime indices, row sums of A112798.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[halfats[primeMS[n]],{n,30}]

A357631 Numbers k such that the half-alternating sum of the prime indices of k is 0.

Original entry on oeis.org

1, 12, 16, 30, 63, 70, 81, 108, 154, 165, 192, 256, 273, 286, 300, 325, 442, 480, 561, 588, 595, 625, 646, 700, 741, 750, 874, 931, 972, 1008, 1045, 1080, 1120, 1173, 1296, 1334, 1452, 1470, 1495, 1540, 1653, 1728, 1771, 1798, 2028, 2139, 2294, 2401, 2430
Offset: 1

Views

Author

Gus Wiseman, Oct 09 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
If k is a term, then so is m^4 * k for any m >= 1. - Robert Israel, Oct 10 2023

Examples

			The terms together with their prime indices begin:
    1: {}
   12: {1,1,2}
   16: {1,1,1,1}
   30: {1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   81: {2,2,2,2}
  108: {1,1,2,2,2}
  154: {1,4,5}
  165: {2,3,5}
  192: {1,1,1,1,1,1,2}
  256: {1,1,1,1,1,1,1,1}
  273: {2,4,6}
  286: {1,5,6}
  300: {1,1,2,3,3}
		

Crossrefs

The version for original alternating sum is A000290.
The version for standard compositions is A357625, reverse A357626.
Positions of zeros in A357629, reverse A357633.
The skew-alternating form is A357632, reverse A357636.
The reverse version is A357635.
These partitions are counted by A357639, skew A357640.
A056239 adds up prime indices, row sums of A112798.
A316524 gives alternating sum of prime indices, reverse A344616.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, even A357642.

Programs

  • Maple
    f:= proc(n) local F,Q,i;
    F:= sort(ifactors(n)[2],(s,t) -> s[1] numtheory:-pi(t[1])$t[2],F);
    Q:= [-1,1,1,-1];
    add(Q[i mod 4 + 1]*F[i],i=1..nops(F))
    end proc:
    select(f=0, [$1..10000]); # Robert Israel, Oct 10 2023
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Select[Range[1000],halfats[primeMS[#]]==0&]

A357640 Number of reversed integer partitions of 2n whose skew-alternating sum is 0.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 24, 40, 59, 93, 136, 208, 299, 445, 632, 921, 1292, 1848, 2563, 3610, 4954, 6881, 9353, 12835, 17290, 23469, 31357, 42150, 55889, 74463, 98038, 129573, 169476, 222339, 289029, 376618, 486773, 630313, 810285, 1043123, 1334174
Offset: 0

Views

Author

Gus Wiseman, Oct 11 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			The a(0) = 1 through a(5) = 9 partitions:
  ()  (11)  (22)    (33)      (44)        (55)
            (1111)  (2211)    (2222)      (3322)
                    (111111)  (3221)      (4321)
                              (3311)      (4411)
                              (221111)    (222211)
                              (11111111)  (322111)
                                          (331111)
                                          (22111111)
                                          (1111111111)
		

Crossrefs

The non-reverse half-alternating version is A035363/A035444.
The non-reverse version appears to be A035544/A035594.
These partitions are ranked by A357632, half A357631.
The half-alternating version is A357639.
A000041 counts integer partitions (also reversed integer partitions).
A316524 gives alternating sum of prime indices, reverse A344616.
A344651 counts alternating sum of partitions by length, ordered A097805.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.
A357637 counts partitions by half-alternating sum, skew A357638.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[IntegerPartitions[2n],skats[Reverse[#]]==0&]],{n,0,15}]

Extensions

a(31) onwards from Lucas A. Brown, Oct 19 2022

A122135 Expansion of f(x, -x^4) / phi(-x^2) in powers of x where f(, ) and phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 26, 31, 40, 48, 60, 72, 89, 106, 130, 154, 186, 220, 264, 310, 370, 433, 512, 598, 704, 818, 958, 1110, 1293, 1494, 1734, 1996, 2308, 2650, 3052, 3496, 4014, 4584, 5248, 5980, 6825, 7760, 8834, 10020, 11380, 12882, 14594
Offset: 0

Views

Author

Michael Somos, Aug 21 2006

Keywords

Comments

Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of integer partitions y of n such that y_i > y_{i+1} for all even i. For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (331) (71) (81)
(2211) (421) (332) (432)
(3211) (431) (441)
(521) (531)
(3311) (621)
(4211) (3321)
(4311)
(5211)
The even-length case appears to be A122134.
The odd-length case is A351595.
The alternately unequal version appears to be A122129, even A351008, odd A122130.
The alternately equal version is A351003, even A351012, odd A000009.
The alternately equal and unequal version is A351005, even A035457, odd A351593.
The alternately unequal and equal version is A351006, even A351007, odd A053251. (End)
For Wiseman's conjecture above and three other partition-theoretic interpretations of this sequence see Connor, Proposition 4. - Peter Bala, Jan 02 2025

Examples

			G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 7*x^7 + 10*x^8 + ...
G.f. = q^9 + q^49 + 2*q^89 + 2*q^129 + 3*q^169 + 4*q^209 + 6*q^249 + ...
		

References

  • G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.5). MR0858826 (88b:11063)
  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(d), p. 591.

Crossrefs

Programs

  • Maple
    f:=n->1/mul(1-q^(20*k+n),k=0..20);
    f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19);
    series(%,q,200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, -x^5] QPochhammer[ x^4, -x^5] QPochhammer[-x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
    nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+1))*(1 - x^(20*k+2))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+8))*(1 - x^(20*k+9))*(1 - x^(20*k+11))*(1 - x^(20*k+12))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+18))*(1 - x^(20*k+19)) ), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1) - 1) \2, x^(k^2 + k) / prod(i=1, 2*k+1, 1 - x^i, 1 + x * O(x^(n-k^2-k)))), n))};

Formula

Expansion of f(x^2, x^8) / f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^3, -x^7) * f(-x^4, -x^16) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, ...].
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1))).
Let f(n) = 1/Product_{k >= 0} (1-q^(20k+n)). Then g.f. is f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19); - N. J. A. Sloane, Mar 19 2012.
a(n) ~ (3 + sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016
Showing 1-10 of 33 results. Next