A351022 Maximal permanent of an n X n symmetric Toeplitz matrix using the first n prime numbers.
1, 2, 13, 289, 13814, 1795898, 265709592, 70163924440, 20610999526800, 9097511018219760, 6845834489829830144
Offset: 0
Examples
a(3) = 289: 3 5 2 5 3 5 2 5 3 a(4) = 13814: 5 7 3 2 7 5 7 3 3 7 5 7 2 3 7 5 a(5) = 1795898: 5 11 7 3 2 11 5 11 7 3 7 11 5 11 7 3 7 11 5 11 2 3 7 11 5
Links
- Lucas A. Brown, A351021+2.sage
- Wikipedia, Toeplitz Matrix
Programs
-
Python
from itertools import permutations from sympy import Matrix, prime def A351022(n): return 1 if n == 0 else max(Matrix([p[i:0:-1]+p[0:n-i] for i in range(n)]).per() for p in permutations(prime(i) for i in range(1,n+1))) # Chai Wah Wu, Jan 31 2022
Extensions
a(9) and a(10) from Lucas A. Brown, Sep 04 2022