cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351105 a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} (i*j*k)^2.

Original entry on oeis.org

0, 1, 85, 1408, 11440, 61490, 251498, 846260, 2458676, 6369275, 15047175, 32955780, 67746900, 131969604, 245444980, 438485080, 756163672, 1263878005, 2054474617, 3257248280, 5049161480, 7668672374, 11432601950, 16756516140, 24179145900, 34391417775
Offset: 0

Views

Author

Roudy El Haddad, Jan 31 2022

Keywords

Comments

a(n) is the sum of all products of three squares of positive integers up to n, i.e., the sum of all products of three elements from the set of squares {1^2, ..., n^2}.

Crossrefs

A diagonal of A036969.
Cf. A000290 (squares), A000330 (sum of squares), A060493 (for two squares).
Cf. A001297 (for power 1).

Programs

  • Mathematica
    CoefficientList[Series[x (36 x^5 + 460 x^4 + 1065 x^3 + 603 x^2 + 75 x + 1)/(x - 1)^10, {x, 0, 25}], x] (* Michael De Vlieger, Feb 04 2022 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,85,1408,11440,61490,251498,846260,2458676,6369275},30] (* Harvey P. Dale, Jul 18 2022 *)
  • PARI
    {a(n) = n*(n+1)*(n+2)*(n+3)*(2*n+1)*(2*n+3)*(2*n+5)*(35*n^2-21*n+4)/45360};
    
  • PARI
    a(n) = sum(i=1, n, sum(j=1, i, sum(k=1, j, i^2*j^2*k^2)));
    
  • Python
    def A351105(n): return n*(n*(n*(n*(n*(n*(n*(n*(280*n + 2772) + 10518) + 18711) + 14385) + 1323) - 2863) - 126) + 360)//45360 # Chai Wah Wu, Feb 17 2022

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(2n+1)*(2n+3)*(2n+5)*(35*n^2-21*n+4)/45360 (from the recurrent form of Faulhaber's formula).
a(n) = (1/(9!*2))*((2n+6)!/(2n-1)!)*(35*n^2-21*n+4).
a(n) = binomial(2n+6,7)*(35*n^2-21*n+4)/144.
G.f.: x*(36*x^5+460*x^4+1065*x^3+603*x^2+75*x+1)/(x-1)^10. - Alois P. Heinz, Jan 31 2022
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * binomial(2*n, n-j) * j^(2*n+6). - Peter Bala, Mar 31 2025