A351105 a(n) = Sum_{k=1..n} Sum_{j=1..k} Sum_{i=1..j} (i*j*k)^2.
0, 1, 85, 1408, 11440, 61490, 251498, 846260, 2458676, 6369275, 15047175, 32955780, 67746900, 131969604, 245444980, 438485080, 756163672, 1263878005, 2054474617, 3257248280, 5049161480, 7668672374, 11432601950, 16756516140, 24179145900, 34391417775
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums, Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[x (36 x^5 + 460 x^4 + 1065 x^3 + 603 x^2 + 75 x + 1)/(x - 1)^10, {x, 0, 25}], x] (* Michael De Vlieger, Feb 04 2022 *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,1,85,1408,11440,61490,251498,846260,2458676,6369275},30] (* Harvey P. Dale, Jul 18 2022 *)
-
PARI
{a(n) = n*(n+1)*(n+2)*(n+3)*(2*n+1)*(2*n+3)*(2*n+5)*(35*n^2-21*n+4)/45360};
-
PARI
a(n) = sum(i=1, n, sum(j=1, i, sum(k=1, j, i^2*j^2*k^2)));
-
Python
def A351105(n): return n*(n*(n*(n*(n*(n*(n*(n*(280*n + 2772) + 10518) + 18711) + 14385) + 1323) - 2863) - 126) + 360)//45360 # Chai Wah Wu, Feb 17 2022
Formula
a(n) = n*(n+1)*(n+2)*(n+3)*(2n+1)*(2n+3)*(2n+5)*(35*n^2-21*n+4)/45360 (from the recurrent form of Faulhaber's formula).
a(n) = (1/(9!*2))*((2n+6)!/(2n-1)!)*(35*n^2-21*n+4).
a(n) = binomial(2n+6,7)*(35*n^2-21*n+4)/144.
G.f.: x*(36*x^5+460*x^4+1065*x^3+603*x^2+75*x+1)/(x-1)^10. - Alois P. Heinz, Jan 31 2022
a(n) = 2/(2*n)! * Sum_{j = 1..n} (-1)^(n+j) * binomial(2*n, n-j) * j^(2*n+6). - Peter Bala, Mar 31 2025
Comments