A351126 a(n) = A195199(n) / n.
4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 10, 4, 6, 4, 6, 4, 8, 4, 6, 4, 6, 4, 10, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 10, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 10, 4, 6, 4, 6, 4, 8, 4, 6, 4, 6, 4, 12, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 10, 4, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 10, 4
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{d = DivisorSigma[0, n], k = 1}, While[DivisorSigma[0, k*n] <= 2*d, k++]; k]; Array[a, 100] (* Amiram Eldar, Feb 03 2022 *)
-
PARI
a(n) = my(m=n, d=numdiv(n)); while(numdiv(m)<=2*d, m+=n); m/n; \\ Michel Marcus, Feb 27 2022
-
Python
from math import prod from collections import Counter from itertools import count from sympy import factorint def A351126(n): f = Counter(factorint(n)) d = prod(e+1 for e in f.values()) for m in count(2): if prod(e+1 for e in (f+Counter(factorint(m))).values()) > 2*d: return m # Chai Wah Wu, Feb 28 2022
Comments