A351135
a(n) = Sum_{k=0..n} k! * k^(k*n) * Stirling1(n,k).
Original entry on oeis.org
1, 1, 31, 117716, 103060088854, 35762522985456876854, 7426384178533125493811949517898, 1294894823429942179301223205449027573956692920, 253092741940931724343266089700550691376738432767085871485096840
Offset: 0
-
a[0] = 1; a[n_] := Sum[k! * k^(k*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 9, 0] (* Amiram Eldar, Feb 02 2022 *)
-
a(n) = sum(k=0, n, k!*k^(k*n)*stirling(n, k, 1));
-
my(N=10, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, log(1+k^k*x)^k)))
A351136
a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(2*n) * Stirling1(n,k).
Original entry on oeis.org
1, 1, 33, 4760, 1814698, 1436035954, 2041681617638, 4736066140912728, 16729538152432476024, 85437808930634601070944, 605822464949212598847700512, 5774077466357788471179323050704, 72030066703292325305595937373723040
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(2*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 13, 0] (* Amiram Eldar, Feb 02 2022 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(2*n)*stirling(n, k, 1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^2*x))^k)))
A351137
a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(3*n) * Stirling1(n,k).
Original entry on oeis.org
1, 1, 129, 121172, 421875178, 3922823960054, 80130334773241142, 3156849112458066440568, 218554371053209725986724984, 24795129220015277612148345850896, 4365539219231132131300647267518575008, 1141930521329052244894253748456776246166288
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(3*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 12, 0] (* Amiram Eldar, Feb 02 2022 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(3*n)*stirling(n, k, 1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^3*x))^k)))
Showing 1-3 of 3 results.
Comments