cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A351143 G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 2*x)) / (1 - 2*x).

Original entry on oeis.org

1, 0, 1, 2, 5, 16, 61, 258, 1177, 5776, 30537, 173394, 1050045, 6732608, 45459493, 322141106, 2390075249, 18525967328, 149684238801, 1257802518754, 10969260208565, 99100423076912, 926030783479629, 8937741026924450, 88988433270106249, 912906193294355952
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2022

Keywords

Comments

Shifts 2 places left under 2nd-order binomial transform.

Crossrefs

Programs

  • Maple
    bintr:= proc(p) local b;
              b:= proc(n) option remember; add(p(k)*binomial(n, k), k=0..n) end
            end:
    b:= (bintr@@2)(a):
    a:= n-> `if`(n<2, 1-n, b(n-2)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 07 2025
  • Mathematica
    nmax = 25; A[] = 0; Do[A[x] = 1 + x^2 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[Binomial[n - 2, k] 2^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 25}]
    (* another program *)
    B[x_] := BesselK[1, 1]*BesselI[0, Exp[x]] + BesselI[1, 1]*BesselK[0, Exp[x]];
    a[n_] := SeriesCoefficient[FullSimplify[Series[B[x], {x, 0, n}]], n] n!
    Table[a[n], {n, 0, 30}] (* Ven Popov, Apr 25 2025 *)

Formula

a(0) = 1, a(1) = 0; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 2^k * a(n-k-2).
E.g.f.: BesselK(1, 1)*BesselI(0, exp(x)) + BesselI(1, 1)*BesselK(0, exp(x)). - Ven Popov, Apr 25 2025

A351144 G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 3*x)) / (1 - 3*x).

Original entry on oeis.org

1, 0, 1, 3, 10, 39, 181, 972, 5797, 37389, 258202, 1905681, 15016465, 125920872, 1117950913, 10452866439, 102485649754, 1050464300187, 11231883627301, 125055844922916, 1447371528438565, 17382103226123313, 216221862096537994, 2781342531957176085, 36942930754308211969
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2022

Keywords

Comments

Shifts 2 places left under 3rd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 24; A[] = 0; Do[A[x] = 1 + x^2 A[x/(1 - 3 x)]/(1 - 3 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[Binomial[n - 2, k] 3^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 24}]

Formula

a(0) = 1, a(1) = 0; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 3^k * a(n-k-2).

A351151 G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 5*x)) / (1 - 5*x).

Original entry on oeis.org

1, 0, 1, 5, 26, 145, 901, 6420, 52501, 480955, 4795626, 51066375, 576182001, 6879462680, 86955722401, 1162559359745, 16392133866026, 242734091500445, 3758825675820501, 60660434188558780, 1017770666417312501, 17725289455315892375, 320047193447632729626
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2022

Keywords

Comments

Shifts 2 places left under 5th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[] = 0; Do[A[x] = 1 + x^2 A[x/(1 - 5 x)]/(1 - 5 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[Binomial[n - 2, k] 5^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 22}]

Formula

a(0) = 1, a(1) = 0; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 5^k * a(n-k-2).

A351152 G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - 6*x)) / (1 - 6*x).

Original entry on oeis.org

1, 0, 1, 6, 37, 240, 1693, 13446, 122329, 1261104, 14332681, 175123446, 2267871517, 30981705984, 446571784261, 6798161166486, 109220619908593, 1846729159654560, 32726973173941585, 605358657750562470, 11648701234354836565, 232655173657593759312
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 02 2022

Keywords

Comments

Shifts 2 places left under 6th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = 1 + x^2 A[x/(1 - 6 x)]/(1 - 6 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[Binomial[n - 2, k] 6^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 21}]

Formula

a(0) = 1, a(1) = 0; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 6^k * a(n-k-2).

A351128 G.f. A(x) satisfies: A(x) = x + x^2 * A(x/(1 - 4*x)) / (1 - 4*x).

Original entry on oeis.org

0, 1, 0, 1, 8, 49, 280, 1649, 10800, 81505, 696400, 6472033, 63562872, 652984977, 7026210728, 79547049681, 949709767904, 11936248012993, 157219119485216, 2159448120457409, 30811324011852136, 455635009201780977, 6975424580445456056, 110478282815356437809
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Comments

Shifts 2 places left under 4th-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[] = 0; Do[A[x] = x + x^2 A[x/(1 - 4 x)]/(1 - 4 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[n - 2, k] 4^k a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 23}]

Formula

a(0) = 0, a(1) = 1; a(n) = Sum_{k=0..n-2} binomial(n-2,k) * 4^k * a(n-k-2).
Showing 1-5 of 5 results.