A351196 Sum of the 8th powers of the primes dividing n.
0, 256, 6561, 256, 390625, 6817, 5764801, 256, 6561, 390881, 214358881, 6817, 815730721, 5765057, 397186, 256, 6975757441, 6817, 16983563041, 390881, 5771362, 214359137, 78310985281, 6817, 390625, 815730977, 6561, 5765057, 500246412961, 397442, 852891037441, 256
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Array[DivisorSum[#, #^8 &, PrimeQ] &, 50] f[p_, e_] := p^8; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
-
Python
from sympy import primefactors def A351196(n): return sum(p**8 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
Formula
a(n) = Sum_{p|n, p prime} p^8.
G.f.: Sum_{k>=1} prime(k)^8 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 16 2022
Additive with a(p^e) = p^8. - Amiram Eldar, Jun 20 2022
a(n) = Sum_{d|n} d^8 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024
Comments