cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351197 Sum of the 9th powers of the primes dividing n.

Original entry on oeis.org

0, 512, 19683, 512, 1953125, 20195, 40353607, 512, 19683, 1953637, 2357947691, 20195, 10604499373, 40354119, 1972808, 512, 118587876497, 20195, 322687697779, 1953637, 40373290, 2357948203, 1801152661463, 20195, 1953125, 10604499885, 19683, 40354119, 14507145975869, 1973320, 26439622160671, 512, 2357967374
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 04 2022

Keywords

Comments

Inverse Möbius transform of n^9 * c(n), where c(n) is the prime characteristic (A010051). - Wesley Ivan Hurt, Jun 22 2024

Crossrefs

Sum of the k-th powers of the primes dividing n for k=0..10 : A001221 (k=0), A008472 (k=1), A005063 (k=2), A005064 (k=3), A005065 (k=4), A351193 (k=5), A351194 (k=6), A351195 (k=7), A351196 (k=8), this sequence (k=9), A351198 (k=10).
Cf. A010051.

Programs

  • Mathematica
    Array[DivisorSum[#, #^9 &, PrimeQ] &, 50]
    f[p_, e_] := p^9; a[n_] := Plus @@ f @@@ FactorInteger[n]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • Python
    from sympy import primefactors
    def A351197(n): return sum(p**9 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022

Formula

a(n) = Sum_{p|n, p prime} p^9.
G.f.: Sum_{k>=1} prime(k)^9 * x^prime(k) / (1 - x^prime(k)). - Ilya Gutkovskiy, Feb 16 2022
Additive with a(p^e) = p^9. - Amiram Eldar, Jun 20 2022
a(n) = Sum_{d|n} d^9 * c(d), where c = A010051. - Wesley Ivan Hurt, Jun 22 2024