cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351262 a(n) = n^10 * Sum_{p|n, p prime} 1/p^10.

Original entry on oeis.org

0, 1, 1, 1024, 1, 60073, 1, 1048576, 59049, 9766649, 1, 61514752, 1, 282476273, 9824674, 1073741824, 1, 3547250577, 1, 10001048576, 282534298, 25937425625, 1, 62991106048, 9765625, 137858492873, 3486784401, 289255703552, 1, 586710856801, 1, 1099511627776, 25937483650
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Dirichlet convolution of A010051(n) and n^10. - Wesley Ivan Hurt, Jul 15 2025

Examples

			a(6) = 60073; a(6) = 6^10 * Sum_{p|6, p prime} 1/p^10 = 60466176 * (1/2^10 + 1/3^10) = 60073.
		

Crossrefs

Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), this sequence (k=10).

Programs

  • Maple
    f:= proc(n) local p;
      n^10 * add(1/p^10, p = numtheory:-factorset(n))
    end proc:
    map(f, [$1..40]); # Robert Israel, Sep 10 2024
  • Mathematica
    Join[{0},Table[n^10 Total[1/FactorInteger[n][[;;,1]]^10],{n,2,40}]] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    a(n) = my(f=factor(n)); n^10*sum(k=1, #f~, 1/f[k,1]^10); \\ Michel Marcus, Sep 10 2024
  • Python
    from sympy import primefactors
    def A351262(n): return sum((n//p)**10 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
    

Formula

a(A000040(n)) = 1.
a(n) = Sum_{d|n} A069095(d)*A001221(n/d). - Ridouane Oudra, Jul 15 2025
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^10, where c = A010051.
a(p^k) = p^(10*k-10) for p prime and k>=1. (End)