A351262 a(n) = n^10 * Sum_{p|n, p prime} 1/p^10.
0, 1, 1, 1024, 1, 60073, 1, 1048576, 59049, 9766649, 1, 61514752, 1, 282476273, 9824674, 1073741824, 1, 3547250577, 1, 10001048576, 282534298, 25937425625, 1, 62991106048, 9765625, 137858492873, 3486784401, 289255703552, 1, 586710856801, 1, 1099511627776, 25937483650
Offset: 1
Keywords
Examples
a(6) = 60073; a(6) = 6^10 * Sum_{p|6, p prime} 1/p^10 = 60466176 * (1/2^10 + 1/3^10) = 60073.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local p; n^10 * add(1/p^10, p = numtheory:-factorset(n)) end proc: map(f, [$1..40]); # Robert Israel, Sep 10 2024
-
Mathematica
Join[{0},Table[n^10 Total[1/FactorInteger[n][[;;,1]]^10],{n,2,40}]] (* Harvey P. Dale, Aug 10 2024 *)
-
PARI
a(n) = my(f=factor(n)); n^10*sum(k=1, #f~, 1/f[k,1]^10); \\ Michel Marcus, Sep 10 2024
-
Python
from sympy import primefactors def A351262(n): return sum((n//p)**10 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
Formula
a(A000040(n)) = 1.
From Wesley Ivan Hurt, Jul 15 2025: (Start)
a(n) = Sum_{d|n} c(d) * (n/d)^10, where c = A010051.
a(p^k) = p^(10*k-10) for p prime and k>=1. (End)
Comments