A351270 Sum of the 7th powers of the squarefree divisors of n.
1, 129, 2188, 129, 78126, 282252, 823544, 129, 2188, 10078254, 19487172, 282252, 62748518, 106237176, 170939688, 129, 410338674, 282252, 893871740, 10078254, 1801914272, 2513845188, 3404825448, 282252, 78126, 8094558822, 2188, 106237176, 17249876310, 22051219752, 27512614112
Offset: 1
Examples
a(4) = 129; a(4) = Sum_{d|4} d^7 * mu(d)^2 = 1^7*1 + 2^7*1 + 4^7*0 = 129.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^7); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
Formula
a(n) = Sum_{d|n} d^7 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^7. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^7 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/(8*zeta(2)) = Pi^6/12600 = 0.0763007... . - Amiram Eldar, Nov 10 2022
Comments