A351271 Sum of the 8th powers of the squarefree divisors of n.
1, 257, 6562, 257, 390626, 1686434, 5764802, 257, 6562, 100390882, 214358882, 1686434, 815730722, 1481554114, 2563287812, 257, 6975757442, 1686434, 16983563042, 100390882, 37828630724, 55090232674, 78310985282, 1686434, 390626, 209642795554, 6562, 1481554114, 500246412962
Offset: 1
Examples
a(4) = 257; a(4) = Sum_{d|4} d^8 * mu(d)^2 = 1^8*1 + 2^8*1 + 4^8*0 = 257.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, Transforms.
Crossrefs
Programs
-
Mathematica
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^8); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
Formula
a(n) = Sum_{d|n} d^8 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^8. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^8 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^9, where c = zeta(9)/(9*zeta(2)) = 0.0676831... . - Amiram Eldar, Nov 10 2022
Comments