A351307 Sum of the squares of the square divisors of n.
1, 1, 1, 17, 1, 1, 1, 17, 82, 1, 1, 17, 1, 1, 1, 273, 1, 82, 1, 17, 1, 1, 1, 17, 626, 1, 82, 17, 1, 1, 1, 273, 1, 1, 1, 1394, 1, 1, 1, 17, 1, 1, 1, 17, 82, 1, 1, 273, 2402, 626, 1, 17, 1, 82, 1, 17, 1, 1, 1, 17, 1, 1, 82, 4369, 1, 1, 1, 17, 1, 1, 1, 1394, 1, 1, 626, 17, 1, 1
Offset: 1
Examples
a(16) = 273; a(16) = Sum_{d^2|16} (d^2)^2 = (1^2)^2 + (2^2)^2 + (4^2)^2 = 273.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := (p^(4*(1 + Floor[e/2])) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 07 2022 *)
-
PARI
my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, k^4*x^k^2/(1-x^k^2))) \\ Seiichi Manyama, Feb 12 2022
-
Python
from math import prod from sympy import factorint def A351307(n): return prod((p**(4+((e&-2)<<1))-1)//(p**4-1) for p,e in factorint(n).items()) # Chai Wah Wu, Jul 11 2024
Formula
a(n) = Sum_{d^2|n} (d^2)^2.
Multiplicative with a(p) = (p^(4*(1+floor(e/2))) - 1)/(p^4 - 1). - Amiram Eldar, Feb 07 2022
G.f.: Sum_{k>0} k^4*x^(k^2)/(1-x^(k^2)). - Seiichi Manyama, Feb 12 2022
From Amiram Eldar, Sep 19 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-4).
Sum_{k=1..n} a(k) ~ (zeta(5/2)/5) * n^(5/2). (End)
a(n) = Sum_{d|n} d^2 * c(d), where c = A010052. - Wesley Ivan Hurt, Jun 20 2024
a(n) = Sum_{d|n} lambda(d)*d^2*sigma_2(n/d), where lambda = A008836. - Ridouane Oudra, Jul 18 2025
Comments