A351385 Triangle read by rows: T(n,k) = Sum_{j=k..n} binomial(n + j, n)*binomial(n, j)/(j + 1).
1, 2, 1, 6, 5, 2, 22, 21, 15, 5, 90, 89, 79, 49, 14, 394, 393, 378, 308, 168, 42, 1806, 1805, 1784, 1644, 1224, 594, 132, 8558, 8557, 8529, 8277, 7227, 4917, 2145, 429, 41586, 41585, 41549, 41129, 38819, 31889, 19877, 7865, 1430, 206098, 206097, 206052, 205392, 200772, 182754, 140712, 80652, 29172, 4862
Offset: 0
Examples
Triangle begins: n [0] 1; [1] 2, 1; [2] 6, 5, 2; [3] 22, 21, 15, 5; [4] 90, 89, 79, 49, 14; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
Mathematica
Flatten[Table[ Sum[Binomial[n + j, n] Binomial[n, j]/(j + 1), {j, k, n}], {n, 0, 10}, {k, 0, n}]]
-
PARI
T(n,k)={sum(j=k, n, binomial(n+j, n)*binomial(n,j)/(j+1))} \\ Andrew Howroyd, Feb 09 2022
Formula
G.f.: 2/(sqrt(1 - 6*x + x^2) + sqrt(1 - 2*x + x^2 - 4*x*y)).
From Alois P. Heinz, Feb 09 2022: (Start)
Sum_{k=0..n} k * T(n,k) = A002695(n).
Sum_{k=0..n} (-1)^k * T(n,k) = A001003(n).
Sum_{k=0..n} (-1)^k * T(n,n-k) = A080243(n). (End)
Comments