cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351400 Decimal expansion of e * erf(1), where erf is the error function.

Original entry on oeis.org

2, 2, 9, 0, 6, 9, 8, 2, 5, 2, 3, 0, 3, 2, 3, 8, 2, 3, 0, 9, 4, 9, 5, 3, 7, 1, 2, 6, 8, 6, 2, 1, 4, 7, 3, 1, 6, 9, 3, 7, 0, 8, 7, 5, 9, 0, 5, 3, 5, 7, 0, 6, 9, 1, 1, 2, 2, 1, 4, 2, 7, 8, 5, 6, 9, 8, 3, 5, 7, 1, 2, 0, 8, 5, 3, 3, 3, 0, 4, 3, 4, 9, 3, 6, 4, 3, 3, 4, 0, 8, 5, 8, 0, 5, 7, 7, 9, 8, 9, 4, 9, 4, 6, 1, 9
Offset: 1

Views

Author

Amiram Eldar, Feb 10 2022

Keywords

Comments

The sum of reciprocals of the factorials of the positive half-integers.

Examples

			2.29069825230323823094953712686214731693708759053570...
		

References

  • Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei Rogosin, Mittag-Leffler Functions, Related Topics and Applications, New York, NY: Springer, 2020. See p. 94, eq. (4.12.9.5).
  • Constantin Milici, Gheorghe Drăgănescu, and J. Tenreiro Machado, Fractional Differential Equations, Introduction to Fractional Differential Equations, Springer, Cham, 2019. See p. 12, eq. (1.9).

Crossrefs

Programs

  • Maple
    evalf(exp(1)*erf(1), 120);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    RealDigits[E * Erf[1], 10, 100][[1]]
  • PARI
    exp(1)*(1 - erfc(1)) \\ Michel Marcus, Feb 10 2022

Formula

Equals Sum_{k>=0} 1/(k + 1/2)! = Sum_{k>=1} 1/Gamma(k + 1/2).
Equals E_{1, 3/2}(1), where E_{a,b}(z) is the two-parameter Mittag-Leffler function.
Equals (1/sqrt(Pi)) * Sum_{k>=1} 2^k/(2*k-1)!! = (1/sqrt(Pi)) * Sum_{k>=1} A000079(k)/A001147(k).
Equals A001113 * A099286.
Equals A087197 * A125961.