A351400 Decimal expansion of e * erf(1), where erf is the error function.
2, 2, 9, 0, 6, 9, 8, 2, 5, 2, 3, 0, 3, 2, 3, 8, 2, 3, 0, 9, 4, 9, 5, 3, 7, 1, 2, 6, 8, 6, 2, 1, 4, 7, 3, 1, 6, 9, 3, 7, 0, 8, 7, 5, 9, 0, 5, 3, 5, 7, 0, 6, 9, 1, 1, 2, 2, 1, 4, 2, 7, 8, 5, 6, 9, 8, 3, 5, 7, 1, 2, 0, 8, 5, 3, 3, 3, 0, 4, 3, 4, 9, 3, 6, 4, 3, 3, 4, 0, 8, 5, 8, 0, 5, 7, 7, 9, 8, 9, 4, 9, 4, 6, 1, 9
Offset: 1
Examples
2.29069825230323823094953712686214731693708759053570...
References
- Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei Rogosin, Mittag-Leffler Functions, Related Topics and Applications, New York, NY: Springer, 2020. See p. 94, eq. (4.12.9.5).
- Constantin Milici, Gheorghe Drăgănescu, and J. Tenreiro Machado, Fractional Differential Equations, Introduction to Fractional Differential Equations, Springer, Cham, 2019. See p. 12, eq. (1.9).
Links
- Eric Weisstein's World of Mathematics, Erf.
- Eric Weisstein's World of Mathematics, Mittag-Leffler Function.
- Wikipedia, Mittag-Leffler function.
Programs
-
Maple
evalf(exp(1)*erf(1), 120); # Alois P. Heinz, Feb 10 2022
-
Mathematica
RealDigits[E * Erf[1], 10, 100][[1]]
-
PARI
exp(1)*(1 - erfc(1)) \\ Michel Marcus, Feb 10 2022
Comments